فهرست مطالب نویسنده:
behnam javahery
-
در این مقاله استفاده از مدل های شبکه عصبی مصنوعی(ANN) و برخی الگوهای متداول در زمینه پیش بینی نرخ ارز، مورد آزمون و تحلیل قرار گرفته بدین صورت که، عملکرد پنج الگوی رگرسیون خطی در مقایسه با شبکه های عصبی مصنوعی، برای پیش بینی نرخ ارز اسمی (ریال ایران به دلار ایالات متحده آمریکا) مورد بررسی قرار می گیرد. الگوهای رگرسیون خطی عبارتند از روش باکس- جنکینز (الگوی میانگین متحرک انباشته خود همبسته)، فرایند گام تصادفی و سه تصریح مختلف بر اساس نظریه برابری قدرت خرید (PPP). هدف اصلی این مقاله، آزمون این فرضیه است که آیا شبکه های عصبی مصنوعی با توان براورد روابط غیرخطی، دارای نتایج بهتر و قابل مقایسه در پیش بینی نرخ ارز نسبت به الگوهای سنتی، به خصوص الگوی گام تصادفی اند یا خیر؟ مقایسه مذکور برای مشاهدات داخل نمونه، براورد الگوها و خارج از نمونه برای افق های پیش بینی رو به جلوی یک، شش و دوازده ماهه انجام می پذیرد. در حالت کلی، نتایج به دست آمده حاکی از دشوار بودن پیش بینی نرخ ارز، توسط الگوهای ساختاری اقتصادی است، این نتایج هماهنگ با مطالعات قبلی در این زمینه است. بدین صورت که الگوی(فرایند) گام تصادفی نسبت به الگوهای ساختاری پولی در پیش بینی نرخ ارز از عملکرد بهتری برخوردار است. در مقایسه مستقیم عملکرد مدل های(خطی) اقتصادسنجی ساختاری و سری زمانی با شبکه های عصبی(غیرخطی) و با داده های ماهانه، مدل های شبکه های عصبی مصنوعی به وضوح از قدرت بیشتری در زمینه پیش بینی نرخ ارز برخوردارند.
کلید واژگان: پیش بینی نرخ ارز، برابری قدرت خرید (PPP)، الگوهای ساختاری اقتصادی، شبکه های عصبی مصنوعی، مدل های خطی و غیر خطیThis research examines and analyses the use of Artificial Neural Network (ANN) models in foreign exchange (FX) forecasting and trading models. Also, the performance of five linear models of exchange rate of Iranian Rial/US dollar is compared with that of ANNs. The linear models are Box-Jenkins methods (auto regressive integrated moving average), two forms of random walk process (with a variable drift and without it) and three different specifications based on the purchasing power parity (PPP) hypothesis. The aim is to examine whether potentially highly nonlinear neural network models outperform traditional methods? We employ ANNs to study the nonlinear predictability of exchange rate for the Iranian Rial /US dollar. The comparative exercise has been conducted both in-simple and out-of-simple, at the 1-, 6- and 12-month forecast horizons. In general, the results confirm the difficulty in forecasting exchange rats, and reaffirm those obtained in previous literature which shows that the performance of econometric models of the exchange rates is inferior to that of a random walk (RW). In the direct comparison between structure econometric, time series and artificial neural network, the experiment with monthly data indicates that there ANNs clearly improves forecasting the exchange rate.Keywords: Exchange Rate Forecasting, Purchasing Power Parity, Econometric Models, Artificial Neural Network, Linear, Non, Linear Models
بدانید!
- در این صفحه نام مورد نظر در اسامی نویسندگان مقالات جستجو میشود. ممکن است نتایج شامل مطالب نویسندگان هم نام و حتی در رشتههای مختلف باشد.
- همه مقالات ترجمه فارسی یا انگلیسی ندارند پس ممکن است مقالاتی باشند که نام نویسنده مورد نظر شما به صورت معادل فارسی یا انگلیسی آن درج شده باشد. در صفحه جستجوی پیشرفته میتوانید همزمان نام فارسی و انگلیسی نویسنده را درج نمایید.
- در صورتی که میخواهید جستجو را با شرایط متفاوت تکرار کنید به صفحه جستجوی پیشرفته مطالب نشریات مراجعه کنید.