به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
فهرست مطالب نویسنده:

g. vikram raju

  • قابلیت انتقال توان افزایش یافته با سیستم انتقال شش فاز امکان پذیر است اما به دلیل عدم وجود یک طرح حفاظتی مناسب برای ایمن سازی خط از 120 نوع خطای مختلف اتصال کوتاه احتمالی محبوبیت پیدا نکرد. این کار یک طرح حفاظتی با تبدیل موجک گسسته (موجک مادر db4) و یک شبکه عصبی مصنوعی (ANN) ارایه می کند. الگوریتم Levenberg-Marquardt برای آموزش شبکه های عصبی مصنوعی استفاده می شود. این طرح حفاظتی فقط به اطلاعات فعلی از پیش پردازش شده گذرگاه پایانی ارسال کننده نیاز دارد. برای تشخیص و طبقه بندی خطای تمامی 120 نوع خطا، یک ماژول ANN منفرد با شش ورودی و شش خروجی پیاده سازی شده است. برای تخمین مکان خطا در هر فاز، 11 ماژول ANN با شش خروجی، یکی برای هر یک از 11 نوع ترکیبی از خطاها، پیاده سازی شده است. نتایج شبیه سازی MATLAB/SIMULINK تکنیک حفاظتی پیشنهادی پیاده سازی شده بر روی سیستم انتقال قدرت شش فاز آلگنی نشان می دهد که در تشخیص و طبقه بندی تمامی خطاها با پارامترهای خطای متغیر با دقت 99.76 درصد موثر و کارآمد است. مشخص شد که عملکرد ماژول های تخمین مکان خطا با داده های آموزشی بهتر و با داده های تست متوسط است.
    کلید واژگان: شبکه عصبی مصنوعی، تبدیل موجک گسسته، تشخیص، طبقه بندی خطا، تخمین مکان خطا، انتقال شش فاز
    G. Vikram Raju *, N. Venkata Srikanth
    The enhanced power transfer capability is possible with the six-phase transmission system but it did not gain popularity due to the lack of a proper protection scheme to secure the line from 120 types of different possible short circuit faults. This work presents a protection scheme with discrete wavelet transform (db4 mother wavelet) and an artificial neural network (ANN). The Levenberg-Marquardt algorithm is used for training the ANNs. This protection scheme requires only the pre-processed current information of the sending end bus. For fault detection and classification of all 120 fault types, a single ANN module is implemented with six inputs and six outputs. For fault location estimation in each phase, 11 ANN modules with six outputs are implemented, one for each of the 11 types of combination of faults. The MATLAB/ SIMULINK simulation results of the proposed protection technique implemented on the six-phase Allegheny power transmission system show that it is effective and efficient in detecting and classifying all the faults with varying fault parameters with an accuracy of 99.76%. It is found that the performance of the fault location estimation modules is better with the training data and moderate with the testing data.
    Keywords: Artificial Neural Network, Discrete wavelet transform, Fault detection, classification, Fault location estimation, Six-phase transmission
بدانید!
  • در این صفحه نام مورد نظر در اسامی نویسندگان مقالات جستجو می‌شود. ممکن است نتایج شامل مطالب نویسندگان هم نام و حتی در رشته‌های مختلف باشد.
  • همه مقالات ترجمه فارسی یا انگلیسی ندارند پس ممکن است مقالاتی باشند که نام نویسنده مورد نظر شما به صورت معادل فارسی یا انگلیسی آن درج شده باشد. در صفحه جستجوی پیشرفته می‌توانید همزمان نام فارسی و انگلیسی نویسنده را درج نمایید.
  • در صورتی که می‌خواهید جستجو را با شرایط متفاوت تکرار کنید به صفحه جستجوی پیشرفته مطالب نشریات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال