manijeh zohorian.pordel
-
هدف اساسی این تحقیق آشکارسازی تغییرات تقویم زیست اقلیمی شهر اهواز در شرایط تغییراقلیم بود، لذا با استفاده از خروجی مدل گردش عمومی HADGM3 براساس گزارش ششم تغییراقلیم CMIP6 تحت خط سیر انتشار SSP245، داده های کمینه و بیشینه دما و رطوبت روزانه، دوره اقلیم آینده نزدیک (2021-2040) شبیه سازی گردید. داده های دما و رطوبت کمینه و بیشینه روزانه نیز برای تحلیل وضعیت بیوکلیمایی دوره پایه (1970-1990)، دوره حاضر (2000-2020) از ایستگاه سینوپتیک اهواز اخذ گردید. در این تحقیق از دستورالعمل و استراتژی های مدل زیست اقلیمی EVANZ برای بررسی تحلیل تغییرات زمانی تقویم زیست اقلیمی شهر اهواز استفاده شد. در این تحقیق دیده شد که در کلانشهر اهوز، در دوره پایه و حاضر در 6 ماه از سال یعنی ماه های اردیبهشت تا مهر ماه، در طی روز تنش گرمایی و احساس ناراحتی گرمایی در سطح شهر وجود دارد، در حالی که تعداد این ماه های توام با تنش گرمایی در اقلیم شبیه سازی شده آینده نزدیک به 8 ماه از سال گسترش یافته است و دو ماه فروردین و آبان نیز به این طبقه توام با تنش حرارتی روزهنگام منتقل شده اند. با توجه به اینکه استفاده از انرژی سرمایشی مبتنی بر برق، در طی ساعاتی از روز برای تعدیل دمای داخل خانه جز استراتژی های فعال توصیه شده در مدل EVANZ در این ماه ها است، لذا در دوره اقلیم آینده، با توجه به طولانی شدن دوره تنش حرارتی از 6 ماه به 8 ماه، میزان بارمصرفی برق در شهر اهواز حدود 30 درصد افزایش پیدا می کند. علاوه بر آن نتایج این تحقیق نشان داد که دراقلیم دوره پایه و حاضر، در 6 ماه از سال یعنی آبان تا فروردین، در طی شب تنش محدود سرمایی در طی وجود دارد، در حالی که اقلیم شبیه سازی شده آینده این شرایط تنش سرمایی تنها در 5 ماه از سال یعنی آبان تا اسفند وجود دارد.
کلید واژگان: تقویم زیست اقلیمی، مدل EVANZ، آسایش اقلیمی، تغییراقلیم، شهر اهوازIntroductionT. Periods of climatic comfort, periods with hot and cold thermal stress, can be shifted in the climate change conditions and their length can also change during the year. Knowledge of these bioclimatic changes of climate comfort can provide a good basis for climate change adaptation planning. The city of Ahvaz is one of the main and major metropolises of the country, which faces significant challenges in terms of bioclimatic conditions. Thermal stresses in the hot period of the year and the frequency of heat waves along with dust events, especially in the last two decades, have severely affected the climatic comfort and bioclimatic conditions of the city.
Materials and methodsAhvaz city is the center and largest city of Khuzestan province. Ahvaz city is located between 48 degrees to 49 degrees and 29 minute’s east longitude from the Greenwich meridian and 30 degrees and 45 minutes to 32 degrees north latitude from the equator. In this research, daily temperature and relative humidity data were used during the statistical period of 1970-2020, for the synoptic station of Ahvaz city. The monthly average of minimum and maximum temperature as well as the monthly average of minimum and maximum relative humidity for the mentioned statistical period were obtained from the National Meteorological Organization. The data related to the near future climate, i.e. the statistical period of 2021-2040, was obtained from the output of the HADGM3 general circulation model based on the 6th CMIP6 climate change report under the SSP245 release trajectory, for the Ahvaz station location. The bioclimatic calendar of Ahvaz city was produced during three periods using the EVANZ model, which included the base period (1970-1990), the current period (2000-2020) and the near future period (2021-2040).
FindingsThe average minimum and maximum temperature in the current period is generally 1.2 degrees Celsius and in the future climate period is 1.5 to 2 degrees Celsius more than the base period, and based on this, the bioclimatic calendar of Ahvaz city has undergone changes. In the metropolis of Ahuz, in the basic and present period in 6 months of the year, i.e. from May to October, during the day there is heat stress and a feeling of heat discomfort in the city, while the number of these months is associated with heat stress in the climate. The simulated future is extended to nearly 8 months of the year, considering that the use of electricity-based cooling energy during daytime hours to adjust the indoor temperature is one of the active strategies recommended in the EVANZ model in these months. Therefore, in the future climate period, due to the lengthening of the heat stress period from 6 months to 8 months, the amount of electricity consumption in Ahvaz city will increase by about 30%. On the other hand, in this research, it was seen that in the basic period during the 4 months of December to March, the conditions of bioclimatic comfort are available during the day, while in the current climate and the future climate, the length of the climatic comfort period is close to 3 months (November until February) has decreased. Climatic comfort at night in Ahvaz metropolis also saw significant changes in the future climate compared to the climate of the base period. The results of this research showed that in the climate of the current and base period, in 6 months of the year, from November to April, there is limited cold stress during the night during the hours of the night, while the simulated future climate of these cold stress conditions It exists only in 5 months of the year, from November to March, and the month of April has changed the bioclimatic situation in the future climate and entered the climatic comfort class without cold stress. Another significant change that has been made in the bioclimatic calendar of Ahvaz city is that in the climate of the basic period only in July and August there are nights with heat stress causing discomfort, which requires artificial cooling of the environment, while In the climate of the present period and the near future period, this period has been extended to 4 months of the year, i.e. June to September, and there is a need for artificial cooling of the home environment during the night hours, which is the problem of the electricity consumption of Ahvaz city in the field of cooling the home environment. It increases by about 50%.
ConclusionIn Ahuz metropolis, during the base period from May to Mehr, during the day there is heat stress and a feeling of heat discomfort in the city, while the number of these months with heat stress in the simulated future climate has reached 8 months. It means that the two months of April and November have also been transferred to this floor along with the daily heat stress. Therefore, in the future climate period, due to the lengthening of the heat stress period from 6 months to 8 months, the amount of electricity consumption in Ahvaz city will increase by about 30%. Also, the results showed that in the climate of the current and base period, there is limited cold stress during the night for 6 months of the year, that is, from November to April, while the simulated climate of the future has this cold stress condition for 5 months. Also, in the climate of the basic period, there is a need for artificial cooling of the environment only in two months, while in the climate of the current period and the near future period, this period has increased to 4 months, and there is a need for artificial cooling of the home environment during the night hours, which The problem of electricity consumption in Ahvaz city increases in the field of environmental cooling.
Keywords: Bioclimatic Calendar, EVANS Model, Climate Comfort, Climate Change, Ahvaz City -
پیش نگری روند دما نسبت به سایر پارامترهای اقلیمی در مطالعات محیطی و جوی از اهمیت ویژ ه ای برخوردار می باشد، زیرا در صنعت ، خشکسالی ، تبخیر وتعرق کار برد و فراوانی دارد . هدف ازاین پزوهش، پیش نگری نوسانات دما در فصل های سرد سال برای یازده سال آینده (2029-2019) با استفاده از مدل شبکه عصبی مصنوعی و سری زمانی آریما (Auto Arima)و مقایسه مدل های نامبرده در شهرستان الشتر واقع در استان لرستان است . برای تحقق هدف فوق ؛ آمار اقلیمی 12 ایستگا ه سینوپتیک در استان لرستان مورد مطالعه قرار گرفت . داده های اقلیمی دما در یک دوره آماری30ساله از سال(2010- 1980) از سازمان هواشناسی کشورتهیه شد . پارامترهای مورد استفاده در مدل های فوق شامل میانگین حداقل وحداکثر دمای فصلی می باشند . که با استفاده از مدل سازی شبکه عصبی مصنوعی ، سری زمانی آریما از طریق لایه های ورودی ، مخفی ، خروجی به وسیله نرون وپرسپترون ، به پیش نگری تغییرات میانگین دمای فصلی می پردازند . محاسبات میانگین تغییرات دمای فصلی در بازه زمانی (2018-1998 با پکیچ (Forecasts فرکست و شاخص RMSE تحلیل گرNNAR انجام شد . نمودارها و گراف ها ترسیم شده است و نتایج بدست آمده جهت پیش نگری دمای فصلی در مقایسه مدل قید شده با دقت 95-80 درصدی نشان دهنده آنست که بیشترین دقت اندازه گیری پیش نگری دما در فصل تابستان با 33% وکمترین دقت اندازه گیری در فصل پاییز با 81% می باشد . نشان از مقایسه دو مدل ذکر شده مشخص شد که مدل شبکه عصبی کارایی بهتر ی نسبت به مدل آریما بر خوردار است .
کلید واژگان: پیش نگری، سری زمانی آریما، شبکه عصبی مصنوعی، شهرستان الشتر، دمای میانگین فصلیThe most important pillar of a scientific and applied research is the statement of the problem, when a problem can be scientific and practical that creates a challenge in relation to the solution of the problem and clearly defines the purpose of the work, as well as the challenges that have arisen in relation to the problem in question, the researcher uses Simulation models can overcome one of the challenges and work as a source of information for climate researchers to use for future research. In this research, the statement of the present problem is the statement of forecasting the average seasonal temperature. What element is temperature, the answer to these questions and reasons, let's hypothesize against it, after formulating the assumptions, prepare climatic data of temperature of the study area and the neighboring stations of the area, and also specify the study area To start the work, using modeling (simulation) and comparison and accuracy of forecasting, he used two models by comparing and measuring the accuracy of their errors, because Temperature is a physical quantity, some of the sun's radiant energy is absorbed by the earth's surface and becomes thermal energy.This energy is expressed in the form of temperature or degrees. Among the different climatic elements, temperature and precipitation are of special importance to predict this. The important key climatic element, our goal is to examine the seasonal average temperature changes in the seasons and determine the seasonal changes with 95% and 80% accuracy using artificial neural network - Arima time series model, RMSE index, and also the models together Let's compare which predicts temperature changes better. So that researchers can use and test these models in future researches to predict other climate parameters and also the impactful consequences of seasonal temperature changes and climate elements such as relative humidity - evaporation and transpiration - industry - transportation - bridges and other infrastructures. Proper planning and management should be done in this regard. In the 21st century, climate change is considered one of the biggest environmental threats to the world. Changes in Farin's climate are estimated to have more negative effects on human society and the natural environment than changes in the average climate (Mahmood and Babel, 2014: 56). Based on the fourth report of the International Commission on Climate Change, which was published under the title of Climate Change Assessment Reports, the global increase in temperature and the occurrence of climate change have been confirmed by using the measured data of the surface temperature of land and water in the world (IPC Si, 2014: 32). The first effect of climate change on atmospheric elements is especially temperature and precipitation, then due to the relationship between atmospheric elements and terrestrial ecosystems, water resources, vegetation, soil and also human life will be affected by this phenomenon; Therefore, investigating the trend of atmospheric variables such as temperature is of particular importance (Abkar et al., 2013: 14).Temperature Some of the radiant energy of the sun absorbed by the effects of the earth's surface turns into thermal energy. This energy is manifested in the form of temperature or degree. Among the different climatic elements, temperature and precipitation are of particular importance. Although the main cause of temperature is the energy obtained from the absorption of short solar radiation on the earth's surface.Using artificial neural network and Arima time seriesThe purpose of this research is to model forecasting changes in seasonal average temperature in the study area of Al-Shatar city using artificial neural network and Arima time series model and to determine the measurement accuracy of neural network models and Arima time series model in forecasting average temperature changes and also The above simulation models should be used to predict the research of future climate researchers and be realized.The main goals of this research are to model and identify seasonal average temperature changes and the relationship of this key element with other climatic parameters of Al-Shatar city. In terms of seasonal average temperature changes and prioritizing areas with temperature variability.This part of the research has monitored and simulated the regression error of Lorestan stations (Alshatar-Broujerd-Aligodarz-Noorabad-Khorramabad-Poldakhter) in the time period (1998-2018) of the stations of Lorestan province with the temporal-spatial analysis of the RMSE index. The obtained results show that the indicators of the cold period of the year in the current situation in different areas (stations of Lorestan province) have had different trends, but the average temperature of the cold seasons of autumn and winter is an increasing trend, which results in the melting of the glaciers and snowfall. Rain is coming and this process is predicted for the next eleven (11) years. In general, the results obtained in this section have shown that the heat waves in the future will be more intense, sharper and more lasting than the current situation, and the highest temperature fluctuations in the autumn season, which is 81. Using RMSE = .003 and ME = .86, it is the artificial neural network that has the best efficiency and performance in Elshatar city station and predicts the average temperature better than the Arima time series model, therefore the artificial neural network model and Arima time series Both have 95% and 80% measurement accuracy. It is better to use these models and other machines in future research to predict the minimum and maximum temperature and other climatic elements. Because they have the best performance and efficiency in forecasting the elements, forecasting the average seasonal temperature can help to plan and manage, control evaporation and transpiration and other resources of the country and Al-Shatar city. It is summer and the least accuracy is in autumn and winter. Considering that the prevailing rain-producing air masses in Al-Shatar city leave the most seasonal changes in autumn and winter, it can be concluded that the most temperature fluctuations occur in the cold seasons of the year and the least fluctuations in The summer season occurs due to the deactivation of the rain-producing western wind, whose value is 33/. Is
Keywords: Forecasting, ARIMA Time Series, Artificial Neural Network, Al-Shatar City, Seasonal Average Temperature -
امروزه مطالعات و بررسی های بیوکلیمای انسانی پایه و اساس برنامه ریزی های شهری، سکونتگاهی، معماری و غیره می باشد، که در همه این مطالعات توجه به سیستم ساختمان سازی متناسب با اقلیم و استفاده از منابع طبیعی موجود در جهت حفظ شرایط آسایش حرارتی و توجه به فضای داخلی و تاثیر پذیری آن از اقلیم منطقه مورد نظر می باشد. بطوریکه اقلیم نیز به نوبه خود طراحی سکونتگاه ها را تحت تاثیر قرار می دهد. روش تحقیق در پژوهش حاضر مبتنی بر مدلسازی اوانز و با استفاده از داده های پنجاه ساله (2010-1961) ایستگاه هواشناسی سینوپتیک اهواز می باشد. و آسایش یا عدم آسایش انسان در این اقلیم بر اساس مدلسازی فوق مورد بررسی قرار گرفت. نتایج تحقیق نشان می دهد که شهر اهواز در طول سال از شرایط بسیار گرم تا خنکی برخوردار است. طی فصول زمستان و تابستان از محدوده آسایش زیست اقلیمی خارج است و با آغاز فصول بهار و پاییز در ماه های گذار از سرما به گرما (فروردین) و گرما به سرما (آبان) اقلیم اهواز به شرایط آسایش انسانی نزدیک می شود.با توجه به شرح مطالب، این نتیجه حاصل می گردد که تقریبا در حدود 9 ماه از سال در طول شب بدون استفاده از وسایل مکانیکی و صرفا با لحاظ نمودن مصالح متناسب با اقلیم و همچنین در نظر گرفتن چگونگی تاثیر عناصر در شهر اهواز شرایط آسایش مهیا می باشد .
کلید واژگان: اهواز، ظرفیت حرارتی، طراحی غیر فعال، زیست اقلیم، اوانزBeng today, human bioclimatic studies are the basis of urban planning, housing, architecture and more.In all of these studies, attention is paid to the interiors and its influence on the climate of the area in question, so tat the climate in turn influences the design of the building. The research metod in this study is based on Evanz modeling and using data Fifty Years (1966-2010) is the Ahvaz Synoptic Weather Station.And human comfort or lack of comfort in this climate was investigated based on the above modeling. The results show that the city of Ahnaz enjoys very hot to cool conditions throughout the year. It is out of the climate comfort zone during the winter and summer reasons and with the onset of spring and autumn seasons in the transition from cold to heat (April) and heat to cold (November) the climate of Ahvaz is approaching human conditions. Summary, it results that approximately9months of the year during the night without the use of mechanical devices and merely considering the materials appropriate to the climate and olso consider how elements in the city of Ahvaz are comfortable condition.Beng today, human bioclimatic studies are the basis of urban planning, housing, architecture and more.In all of these studies, attention is paid to the interiors and its influence on the climate of the area in question, so tat the climate in turn influences the design of the building. The research metod in this study is based on Evanz modeling and using data Fifty Years (1966-2010) is the Ahvaz Synoptic Weather Station.And human comfort or lack of comfort in this climate was investigated based on the above modeling. The results show that the city of Ahnaz enjoys very hot to cool conditions throughout the year. It is out of the climate comfort zone during the winter and summer reasons and with the onset of spring and autumn seasons in the transition from cold to heat (April) and heat to cold (November) the climate of Ahvaz is approaching human conditions. Summary, it results that approximately9months of the year during the night without the use of mechanical devices and merely considering the materials appropriate to the climate and olso consider how elements in the city of Ahvaz are comfortable condition.Beng today, human bioclimatic studies are the basis of urban planning, housing, architecture and more.In all of these studies, attention is paid to the interiors and its influence on the climate of the area in question, so tat the climate in turn influences the design of the building. The research metod in this study is based on Evanz modeling and using data Fifty Years (1966-2010) is the Ahvaz Synoptic Weather Station.And human comfort or lack of comfort in this climate was investigated based on the above modeling. The results show that the city of Ahnaz enjoys very hot to cool conditions throughout the year. It is out of the climate comfort zone during the winter and summer reasons and with the onset of spring and autumn seasons in the transition from cold to heat (April) and heat to cold (November) the climate of Ahvaz is approaching human conditions. Summary, it results that approximately9months of the year during the night without the use of mechanical devices and merely considering the materials appropriate to the climate and olso consider how elements in the city of Ahvaz are comfortable condition.Beng today, human bioclimatic studies are the basis of urban planning, housing, architecture and more.In all of these studies, attention is paid to the interiors and its influence on the climate of the area in question, so tat the climate in turn influences the design of the building. The research metod in this study is based on Evanz modeling and using data Fifty Years (1966-2010) is the Ahvaz Synoptic Weather Station.And human comfort or lack of comfort in this climate was investigated based on the above modeling. The results show that the city of Ahnaz enjoys very hot to cool conditions throughout the year. It is out of the climate comfort zone during the winter and summer reasons and with the onset of spring and autumn seasons in the transition from cold to heat (April) and heat to cold (November) the climate of Ahvaz is approaching human conditions. Summary, it results that approximately9months of the year during the night without the use of mechanical devices and merely considering the materials appropriate to the climate and olso consider how elements in the city of Ahvaz are comfortable condition.
Keywords: Ahvaz, Thermal capacity, InactivDsisgn, Bioclimatic, Evanz -
گرد و غبار در سال های اخیر به یکی ازخطرناک ترین مخاطرات طبیعی در ایران تبدیل شده است و دربخش های غرب و جنوب غرب کشور به شدت در زندگی ساکنان منطقه تاثیر گذاشته و زمینه ساز مهاجرت بی رویه شده است. ریزگردها همچنین پست های برق این مناطق را به شدت تحت تاثیر قرار داده و باعث کوتاهی عمر مقره ها و افزایش هزینه نگه داری تجهیزات برق شده است. هدف این پژوهش تحلیل اثرات گرد و غبار و آلودگی، درطی سال های 96 تا 81 با شیوه های ESDD و NSDD برمقره های برق دراستان خوزستان می باشد که با اخذ آمار پارامترهای اقلیمی و تعداد روزهای گرد و غباری از سازمان های هواشناسی، غلظت آلودگی ها ازسازمان محیط زیست، و میزان آلودگی روی مقره ها ازسازمان برق و با بررسی ارتباط و روند سالیانه بین تعداد روزهای همراه با توفان گرد و غبارو پارامترهای اقلیمی و تحلیل غلظت آلودگی ها با استفاده از شیوه های فوق، مناطق آلوده با بهره گیری ازGIS پهنه بندی گردیدنتایج نشان داد آلودگی منطقه دروضعیت بسیار سنگین و سنگین بوده وکانون اصلی آن درمناطق جنوب استان بین ایستگاه های اهواز، ماهشهر، آبادان وخرمشهرمی باشد. ملاک سنجش آلودگی به علت بروز مکرر پدیده ریزگردها با مواد حل نشدنی بالا، با استفاده همزمان هر دو روش مذکور امکان پذیر است. علت بیش تر قطعی های برق، ترکیب گردوخاک با رطوبت هوا و ایجاد گل ولای چسبنده روی مقره است که منجر به اتصال کوتاه شبکه می شود. بیش ترین تعداد روزهای توفانی با64 روز مربوط به ایستگاه بستان است که به علت واقع شدن درقسمت غربی استان و مجاورت باکشورهای عربی، بیش ترتوفان های آن دارای منشا خارجی و کمترین میزان با22 روز مربوط به ایستگاه دزفول است که درقسمت شرقی تراستان، قرار دارد وبه علت دوری ازگرد و غبارهای قسمت های غربی ، بیش ترتوفان های آن دارای منشاء داخلی می باشد.
کلید واژگان: گرد و غبار، مقره، ESDD و NSDDIntroductionMethods and Materials: Dust and dust has become one of the most dangerous natural hazards in Iran in recent years and has affected the lives of the residents of this region in the west and southwest of the country and has caused irregular migration from these areas. Rainstorms also severely affect the power outlets of these areas, resulting in shorter life spans, increased maintenance costs and corrosion of power distribution equipment, which ultimately lead to extinction and widespread social consequences. At the age of fifteen, during the years 96 to 81 The ESDD practices and insulators on power NSDD Khuzestan province. For this purpose, we obtain five parameters of climatic parameters and number of dust days from meteorological organizations, concentration of pollutants from environmental organization, and amount of pollution on insulators from electricity system and by examining the relationship between annual number of days associated with dust storms and climatic parameters and pollution concentration analysis. The sites were zoned using ESDD and NSDD contaminated areas using GIS.
MethodsDust has become one of the most dangerous natural hazards in Iran in recent years and has affected the lives of residents in the western and southwestern parts of the country and has caused undue migration. Rainstorms have also severely affected the power outages of these areas, resulting in shorter life spans and increased maintenance costs. The purpose of this study is to analyze the effects of dust and pollution during the years of 96-81 by ESDD and NSDD methods on electricity consumption in Khuzestan province. Pollution rates on insulators from power plant and zoning of polluted areas using GIS were analyzed by examining the relationship between annual number of days with dust storms and climatic parameters and analysis of pollution concentrations using the above methods.
ResultsThe results showed that the contamination status of the area was exceeded by international standards and the condition was very heavy and the concentration of contaminants reached from 2010 micrograms / m3 in 2002 to 10000 micrograms / m3 in year 96 and the main concentration of these contaminants in the areas. South of the province is between Ahvaz, Mahshahr, Abadan and Khorramshahr stations. Criterion of contamination due to frequent occurrence of high insoluble matter with high solubility is possible using both ESDD and NSDD methods and due to more power outages, dust deposition and dusts. On insulators and its combination with air humidity and The creation of sticky mud on this factor leads to a short circuit in the network. Amongst the stations, the highest number of stormy days with 64 days is related to Bostan Station due to being located in the western part of the province and close to the eastern and western regions. The Karkheh River, which has the potential to lift particles, as well as the proximity of Arab countries, has most of its foreign-origin storms, with a minimum of 22 days to Dezful Station, located in eastern Tristan, and most of its storms are due to avoiding western dust. It has internal and local origin.
Keywords: Dust, Insects ESDD, NSDD
- در این صفحه نام مورد نظر در اسامی نویسندگان مقالات جستجو میشود. ممکن است نتایج شامل مطالب نویسندگان هم نام و حتی در رشتههای مختلف باشد.
- همه مقالات ترجمه فارسی یا انگلیسی ندارند پس ممکن است مقالاتی باشند که نام نویسنده مورد نظر شما به صورت معادل فارسی یا انگلیسی آن درج شده باشد. در صفحه جستجوی پیشرفته میتوانید همزمان نام فارسی و انگلیسی نویسنده را درج نمایید.
- در صورتی که میخواهید جستجو را با شرایط متفاوت تکرار کنید به صفحه جستجوی پیشرفته مطالب نشریات مراجعه کنید.