به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
فهرست مطالب نویسنده:

memari f

  • محمد بنی اسدی، غلامرضا بابایی، حجت زراعتی، فریدون معماری
    زمینه و هدف
    ارایه فواصل اطمینان برای پارامترهای مجهول در مطالعات مختلف معمولا بر اساس پذیرش پیش فرض هایی است که از آن جمله می توان به ضرورت بزرگ بودن حجم نمونه (به اندازه کافی) اشاره داشت. هدف از انجام این تحقیق، بررسی چگونگی به کارگیری روش بوت استرپ (Bootstrap) در مدل رگرسیون لجستیک (Logistic Regression) و نشان دادن ضرورت بکارگیری روش بوت استرپ در مدل های رگرسیونی لجستیک در مواردی است که اطلاعات کافی در اختیار محقق نباشد.
    روش کار
    برای این منظور اطلاعات مربوط به 150 بیمار را که در فاصله سال های 1378 تا 1380 در انستیتو کانسر مجتمع بیمارستانی امام خمینی تهران به علت ابتلا به سرطان سینه مورد عمل جراحی قرار گرفته اند استخراج کردیم، سپس نمونه تصادفی 50 تایی از بین 150 بیمار استخراج گردید.
    نتایج
    با استفاده از روش معمول رگرسیون لجستیک، مدل مناسب و معنی داری بر اطلاعات اولیه برازش شد و برای هر یک از ضرایب مدل، فاصله اطمینان و خطای معیار محاسبه گردید. نتایج حاصل از کاربرد روش معمول و استفاده از روش بوت استرپ در نمونه های متفاوت نشان می دهد که کاربرد روش بوت استرپ در مواردی که با حجم نمونه ناکافی مواجه هستیم و شرایط مناسب برای استفاده از روش معمول رگرسیون لجستیک فراهم نیست، ضروری بوده و نتایج به دست آمده با افزایش تکرارهای بوت استرپ، به نتایج حاصل از داده های کامل نزدیک می شود.
    نتیجه گیری
    این امر، هم در مورد برآورد ضرایب مدل و هم در مورد فاصله اطمینان و خطای مربوط به ضرایب، صادق است.
    کلید واژگان: بوت استرپ، رگرسیون لجستیک، سرطان پستان، باز نمونه گیری
    Baniasadi M., Babaie Gh.R., Zeraati H., Memari F
    Background And Aim
    The purpose of this study was to assess the accuracy of the bootstrap method in logistic regression and to explore the method's use in logistic regression models in cases where the sample size is insufficient.
    Materials And Methods
    We use data from 150 patients who had undergone surgery at the Cancer Institute, Emam Khomeini hospital during from 1999 to 2001. Then we drew repeated samples of size 50 from these 150 patients.
    Results
    Applying ordinary logistic regression, an appropriate model we fitted to the initial data. Then confidence intervals and standard errors were computed for all regression coefficients. There are many situations where the sample size is insufficient and conditions for using ordinary logistic regression are not met. In these cases the use of the bootstrap method not only produces more accurate estimations of regression coefficients, but with repeated sampling, produces estimates very close to the true values. This holds for the estimation of regression coefficients, confidence intervals and standard errors of coefficients.
    Conclusion
    In this study we show the optimal number of replications and the optimal sample size when using the bootstrap method in studies involving relatively small sample sizes.
بدانید!
  • در این صفحه نام مورد نظر در اسامی نویسندگان مقالات جستجو می‌شود. ممکن است نتایج شامل مطالب نویسندگان هم نام و حتی در رشته‌های مختلف باشد.
  • همه مقالات ترجمه فارسی یا انگلیسی ندارند پس ممکن است مقالاتی باشند که نام نویسنده مورد نظر شما به صورت معادل فارسی یا انگلیسی آن درج شده باشد. در صفحه جستجوی پیشرفته می‌توانید همزمان نام فارسی و انگلیسی نویسنده را درج نمایید.
  • در صورتی که می‌خواهید جستجو را با شرایط متفاوت تکرار کنید به صفحه جستجوی پیشرفته مطالب نشریات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال