به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
فهرست مطالب نویسنده:

neda abdollahi

  • Jafar Jahani *, Mehdi Mohammadi, Neda Abdollahi, Nasrullah Baacha
    Objective

    Educational institutes have increasingly recognized the importance of choosing authentic leadership pattern for their administrators, as it will bring them very positive and wonderful consequences in various levels. Therefore, the aim of the present study is to explore an authentic leadership pattern for educational administrators.

    Method

    In order to achieve this special pattern, the study was performed qualitatively and with a qualitative case study method. Potential research participants included successful directors and Vice-Presidents in Shiraz University and colleges with ten successful managers of the ten first considerations using targeted sampling approach. Then, using snowball sampling technique and considering the findings' saturation criteria, another 5 people were added to determine the sample adequacy. Furthermore, semi-structured interview tools were used to gather the research data and then, the interview results were analyzed; that is, firstly open coding and then axial coding were performed to achieve the basic, the organizer and the comprehensive themes.

    Results

    The findings of the current study showed that, from the primary 188 codes, the authentic leadership pattern of the education administrators involves 83 basic themes and four personal, interpersonal, organizational, and intra-organizational organizer themes in order to achieve the inclusive themes of academic authentic leadership.

    Conclusion

    Paying attention to this leadership style and investment in enhancing this particular model by educational leaders help them to do their tasks effectively toward all the stakeholders in a moral manner and improves managers' insights in developing strategies when dealing with challenges and issues ahead. In conclusion, according to the findings of the study, the following suggestions, divided to functional and research, are being provided.

    Keywords: authentic leadership, Personal, interpersonal, Organizational, and intra-organizational themes
  • زهرا عبداللهی، عطاالله کاویان، کاکا شاهدی، ندا عبداللهی، محمد جعفری
    توسعه تکنیک های مختلف جهت پیش بینی کوتاه مدت و بلند مدت دبی ساعتی، روزانه، ماهانه و سالانه جریان به منظور مدیریت منابع آب و پروژه های عمرانی سابقه طولانی دارد. در دهه های اخیر، تکنیک های یادگیری متعددی به طور گسترده جهت پیش بینی دبی و سایر متغیرهای هیدرولوژیک مورد توجه قرار گرفته اند. پژوهش حاضر با هدف پیش بینی مقادیر دبی روزانه با استفاده از بهینه ترین تعداد داده های ورودی در رودخانه منتهی به رود تالار واقع در حوزه آبخیز کسیلیان انجام گرفت. بدین منظور از سه مدل ثابت (conll.c)، خطی ((linll.c و درجه دو ((quall.c الگوریتم یادگیری محلی کندرو که از کارایی قابل توجهی در شبیه سازی پارامترهای متغیر با داده های ورودی کم برخوردار هستند و هم چنبن با استفاده از سری داده های ورودی 6، 8، 10، 15، 20 روز قبل، یک و دو ماه قبل، یک، دو و سه فصل قبل و در نهایت یک و دو سال قبل استفاده گردید. نتایج به دست آمده از چندین هزار مدل تعلیمی تهیه شده نشان داد که مدل ثابت با داده های دبی روزانه ی 60 روز گذشته با حداقل خطای 001/0 به مقدار واقعی نزدیک تر بوده است. نتایج به دست آمده از مقادیر محاسبه شده RMSE و MAE حاکی از آن است که الگوریتم یادگیری محلی کندرو علی-رغم محدودیت های موجود از جمله حساسیت بسیار بالا به همسایگی، از کارایی بالایی در شبیه سازی سری های زمانی با خطای نسبتا پایین (RMSE کمتر از 06/0) برخوردار می باشد.
    کلید واژگان: حوزه آبخیز کسیلیان، دبی روزانه، مدل یادگیری محلی کندرو، نزدیک ترین همسایگی
    Zahra Abdollahi, Ataollah Kavian, Kaka Shahedi, Neda Abdollahi, Mohammad Jafari
    Introduction
    River discharge as one of the most important hydrology factors has a vital role in physical, ecological, social and economic processes. So, accurate and reliable prediction and estimation of river discharge have been widely considered by many researchers in different fields such as surface water management, design of hydraulic structures, flood control and ecological studies in spetialand temporal scale. Therefore, in last decades different techniques for short-term and long-term estimation of hourly, daily, monthly and annual discharge have been developed for many years. However, short-term estimation models are less sophisticated and more accurate.Various global and local algorithms have been widely used to estimate hydrologic variables. The current study effort to use Lazy Learning approach to evaluate the adequacy of input data in order to follow the variation of discharge and also simulate next-day discharge in Talar River in KasilianBasinwhere is located in north of Iran with an area of 66.75 km2. Lazy learning is a local linear modelling approach in which generalization beyond the training data is delayed until a query is made to the system, as opposed to in eager learning, where the system tries to generalize the training data before receiving queries
    Materials And Methods
    The current study was conducted in Kasilian Basin, where is located in north of Iran with an area of 66.75 km2. The main river of this basin joins to Talar River near Valicbon village and then exit from the watershed. Hydrometric station located near Valicbon village is equipped with Parshall flume and Limnogragh which can record river discharge of about 20 cubic meters per second.In this study, daily data of discharge recorded in Valicbon station related to 2002 to 2012 was used to estimate the discharge of 19 September 2012. The mean annual discharge of considered river was also calculated by using available data about 0.441 cubic meters per second. To estimate the discharge of considered day, three methods of constant, linear and quadratic functionscontrollers based on the local linearization provided by the lazy learning algorithm were considered. Lazy learning is a memory-based linear technique for local modeling approach which is reported as a high-efficient algorithm for simulating variables with low input data.The series of input data was categorized into previous 6, 8, 10, 15 and 20 days, 1 and 2 months, 1, 2 and 3 seasons and also 1 and 2 years to evaluate which series is appropriately enough to predict next-day discharge inthe river. Then, mean absolute error and root-mean square error were calculated for all series and modelsin order to find the best estimator model and the most appropriate series of input data.
    Results
    Results showed that constant and linear model had the minimum root-mean square error of 0.001 and 0.057 respectivelywith previous 60 days’ data series. Whilethe quadratic model had its best estimation with previous 2 season data series with the minimum root-mean square error of 0.059. The result indicated that the more input data increase, the best quadratic model estimate until 60 days. But after 60 days, estimation error gradually increased. Consequently, not more data but adequate areneeded for accurate estimation. Also, RMSE in linear model had less fluctuation and therefore less sensitivity compared with other models. And quadratic model had less fluctuation and sensitivity to neighborhoods. Also, according to results, the more variation in each period increase, the better estimation is accrued by lazy learning algorithm. Hence, it was expected that next-day discharge prediction in low-water period needs longer data series than high-water period.
    Conclusion
    Regarding to thousands of prepared training models, constant model with previous 60 days’ data and minimum error of 0.0001 was selected as the most accurate estimatefor next-day river discharge in Talar River. Results showed that despite of some limitation and demerits, the local Lazy Learning algorithm has significant efficiency in time series simulating. Although the accuracy of simulation increase with more input data, but this algorithm can runby at least 5 training data. However we find lazy learning to be the best performing approach on average goodness indicators (such as mean absolute error and Root-mean square error). On the other hand, the lazy learning predictor can be quickly developed and easily kept up-to-date by adding new data to its database. Also, it does not face with overfitting problems which are common in global modeling approaches.According to some noteworthy features of lazy learning noticed in this regards, this approach will have good performance for time-series studies.
    Keywords: Daily discharge, Kasilian Basin, Local lazy learning model, Nearest Neighborhood
بدانید!
  • در این صفحه نام مورد نظر در اسامی نویسندگان مقالات جستجو می‌شود. ممکن است نتایج شامل مطالب نویسندگان هم نام و حتی در رشته‌های مختلف باشد.
  • همه مقالات ترجمه فارسی یا انگلیسی ندارند پس ممکن است مقالاتی باشند که نام نویسنده مورد نظر شما به صورت معادل فارسی یا انگلیسی آن درج شده باشد. در صفحه جستجوی پیشرفته می‌توانید همزمان نام فارسی و انگلیسی نویسنده را درج نمایید.
  • در صورتی که می‌خواهید جستجو را با شرایط متفاوت تکرار کنید به صفحه جستجوی پیشرفته مطالب نشریات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال