r. abu dawwas
-
Let $G$ be a group with identity $e$ and $R$ be a commutative $G$-graded ring with nonzero unity $1$. In this article, we introduce the concept of graded $r$-ideals. A proper graded ideal $P$ of a graded ring $R$ is said to be graded $r$-ideal if whenever $a, bin h(R)$ such that $abin P$ and $Ann(a)={0}$, then $bin P$. We study and investigate the behavior of graded $r$-ideals to introduce several results. We introduced several characterizations for graded $r$-ideals; we proved that $P$ is a graded $r$-ideal of $R$ if and only if $aP=aRbigcap P$ for all $ain h(R)$ with $Ann(a)={0}$. Also, $P$ is a graded $r$-ideal of $R$ if and only if $P=(P:a)$ for all $ain h(R)$ with $Ann(a)={0}$. Moreover, $P$ is a graded $r$-ideal of $R$ if and only if whenever $A, B$ are graded ideals of $R$ such that $ABsubseteq P$ and $Abigcap r(h(R))neqphi$, then $Bsubseteq P$. In this article, we introduce the concept of $huz$-rings. A graded ring $R$ is said to be $huz$-ring if every homogeneous element of $R$ is either a zero if every graded ideal of $R$ is a graded $r$-ideal. Moreover, assuming that $R$ is a graded domain, we proved that ${0}$ is the only graded $r$-ideal of $R$.
Keywords: Graded prime ideals, Graded r-ideals
- در این صفحه نام مورد نظر در اسامی نویسندگان مقالات جستجو میشود. ممکن است نتایج شامل مطالب نویسندگان هم نام و حتی در رشتههای مختلف باشد.
- همه مقالات ترجمه فارسی یا انگلیسی ندارند پس ممکن است مقالاتی باشند که نام نویسنده مورد نظر شما به صورت معادل فارسی یا انگلیسی آن درج شده باشد. در صفحه جستجوی پیشرفته میتوانید همزمان نام فارسی و انگلیسی نویسنده را درج نمایید.
- در صورتی که میخواهید جستجو را با شرایط متفاوت تکرار کنید به صفحه جستجوی پیشرفته مطالب نشریات مراجعه کنید.