به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

computational intelligence models

در نشریات گروه جغرافیا
تکرار جستجوی کلیدواژه computational intelligence models در نشریات گروه علوم انسانی
تکرار جستجوی کلیدواژه computational intelligence models در مقالات مجلات علمی
  • لاله سلیمی، جعفر معصوم پور*، فیروز مجرد، عبدالله جلیلیان
    هدف

    ایران کشوری پهناور است که به دلیل موقعیت جغرافیایی و شرایط توپوگرافی، دارای آب و هوایی متفاوت است. پژوهش حاضر با هدف انتخاب مناسب ترین شاخص خشکسالی در نواحی اقلیمی ایران و بررسی احتمال وقوع آن از طریق روش های عدم قطعیت انجام شده است.

    روش و داده: 

    لذا در این پژوهش در گام نخست از طریق روش های تصمیم گیری چندمعیاره، مناسب ترین شاخص برای هر ناحیه اقلیمی بر اساس درصد تناسب، انتخاب و در نهایت بر اساس روش های شبکه عصبی مصنوعی، آنالیز احتمالی محاسبه و درصد احتمال وقوع پدیده خشکسالی برای هر ناحیه تعیین شده است. پس از انتخاب شاخص مناسب، برای بیان احتمال وقوع خشکسالی از داده های آماری ایستگاه های سینوپتیک کشور در یک دوره آماری 28 ساله (2017-1990) استفاده شده است. با توجه به توالی داده های بارشی، از دو نوع شبکه عصبی معمولی و عمیق برای بررسی پدیده خشکسالی استفاده گردید. ضمنا برای جبران کمبود داده ها و افزایش سرعت همگرایی شبکه، از روش کرنل برای تولید داده ها در آموزش شبکه عصبی، و برای تحلیل شبکه عصبی مصنوعی و محاسبه احتمال رخداد پدیده خشکسالی، از نظریه تیوری ابری استفاده شده است.

    یافته ها

    در حالت کلی نتیجه نهایی آنالیز تیوری ابری از داده های مورد مطالعه نشان می دهد که در تمامی ایستگاه های بررسی شده در سال هدف یعنی سال 2017، کشور ایران و تمامی ایستگاه های نماینده، وضعیت اقلیمی نزدیک به محدوده نرمال را نشان داده اند و کشور به لحاظ شدت خشکسالی در سال مذکور تقریبا در محدوده نرمال قرار داشته است. بیشترین قطعیت وقوع خشکسالی، به ترتیب به ایستگاه تبریز (96 درصد) و ایستگاه همدان (94 درصد) تعلق دارد.

    نتیجه گیری

    بر مبنای نتایج، مدل عدم قطعیت انتخابی در آنالیز احتمال از توانایی بالایی برخوردار بوده و با درصد اطمینان قابل قبولی احتمال رخداد خشکسالی را پیش بینی کرده است.

    نوآوری، کاربرد نتایج

    با توجه به تفاوت مناطق اقلیمی ایران و حذف مداخله کاربر، و با استفاده از محاسبات علمی و ریاضی، ضریب خطا در انتخاب شاخص کاهش می یابد. سپس با کمک روش های عدم قطعیت مانند تیوری ابری، توانایی پیش بینی احتمال وقوع خشکسالی در آینده افزایش می یابد.

    کلید واژگان: خشکسالی، مدل های هوش محاسباتی، تئوری ابری، عدم قطعیت، نواحی اقلیمی ایران
    Laleh Salimi, Jafar Masoompour *, Firouz Mojarrad, Abdollah Jalilian
    Aim

     Iran is a vast country with a different climate due to its geographical location and topographical conditions. The current research was carried out to select the most appropriate drought index in Iran's climatic regions and investigate the probability of its occurrence through uncertainty methods. 

    Material & Method

     In this research, in the first step, through multi-criteria decision-making methods, the most suitable index for each climate zone is selected based on the percentage of suitability, and finally, based on artificial neural network methods, probability analysis is calculated and the probability of the phenomenon occurring. In this research, after choosing the appropriate index, the statistical data of the country's synoptic station in a statistical period of 28 years (1990-2017) has been used to express the probability of drought, and the Kernel method has been used to converge the data.

    Finding

     The final result of the cloud theory analysis of the studied data shows that in all the stations examined in the target year, i.e., 2017, the country of Iran and all the representative stations have shown climatic conditions close to the normal range. The highest likelihood of occurrence belongs to Tabriz station (96%) and Hamedan station (94%).

    Conclusion

     Based on the results, the selective uncertainty model has a high ability in probability analysis and has predicted the probability of drought with an acceptable percentage of confidence.

    Innovation: 

    Due to the difference in climatic regions of Iran, the elimination of user intervention, and the use of scientific and mathematical calculations, the error rate in selecting the index is reduced. Then, with the help of uncertainty methods such as cloud theory, the ability to predict the probability of drought in the future increases.

    Keywords: Drought, Artificial Neural Network, Computational Intelligence Models, Cloud Theory, Uncertainty, Climatic Regions of Iran
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال