به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

adaboost algorithm

در نشریات گروه حسابداری
تکرار جستجوی کلیدواژه adaboost algorithm در نشریات گروه علوم انسانی
تکرار جستجوی کلیدواژه adaboost algorithm در مقالات مجلات علمی
  • اکبر جوادیان کوتنائی، عباسعلی پورآقاجان سرحمامی*، میر سعید حسینی شیروانی

    درآمدهای مالیاتی یکی از مهم ترین منابع درآمدی دولت و تامین کننده بخش عمده ای از هزینه های دولت است. در سالهای اخیر تقلب در صورت های مالی و اظهارنامه های مالیاتی به طور فزاینده ای به یک مشکل جدی برای کسب و کار، دولت و سرمایه گذاران تبدیل شده است. اکثر مودیان مالیاتی به دنبال راهی برای دستکاری در صورتهای مالی و کاهش سود مشمول مالیات ابرازی خود می باشند. از این رو، شناسایی متقلبین مالیاتی و شرکتهایی که به تقلب در صورتهای مالی می پردازند به امری حیاتی برای دولت تبدیل شده است. هدف از این تحقیق ارایه مدلی است که در آن از الگوریتم درخت تصمیم گیریID3 بهبود یافته استفاده شده است. همچنین برای بهبود عملکرد و دقت آن، با شبکه های عصبی پرسپترون چندلایه بهینه سازی شده توسط الگوریتم ژنتیک ترکیب گردید تا نسبت های مالی مرتبط با تقلب مالیاتی انتخاب نموده و سربار محاسباتی کاهش یابد. درختی که در مدل پیشنهادی ایجاد می شود دارای کمترین عمق ممکن می باشد که از این رو دارای سرعت بالا و سربار محاسباتی پایینی می باشد. بدین منظور صورتهای مالی 60 شرکت پذیرفته شده در بورس اوراق بهادار تهران در سالهای 1394 لغایت 1396 بررسی و 54 نسبت مالی از آن ها استخراج گردید که به وسیله آزمون ANOVA تعداد 23 نسبت و نهایتا توسط شبکه های عصبی تعداد 7 نسبت مرتبط با تقلب مالیاتی، به عنوان داده های ورودی مدل انتخاب گردید. مدل ارایه شده با دقت 81/4 درصد، در شناسایی شرکتهای دارای تقلب مالیاتی، موفق بوده که نسبت به الگوریتم آدابوست دارای بالاترین دقت و قدرت پیش بینی بوده است.

    کلید واژگان: تقلب مالیاتی، مالیات ابرازی، درخت تصمیم بهبود یافته، الگوریتم ژنتیک، الگوریتم آدابوست
    Akbar Javadian Kootanaee, Abbas Ali Poor Aghajan Sarhamami *, Mirsaeid Hosseini Shirvani

    Tax revenues are one of the most important sources of governments and cover a large portion of government spending. In recent years, fraud in financial statements and tax returns has increasingly become a serious problem for businesses, governments and investors. Most taxpayers are looking for a way to manipulate their financial statements and reduce their taxable profits. Therefore, identifying tax fraudsters and companies that cheat on financial statements has become a vital issue for the government.The purpose of this study is to present a model that uses the improved ID 3decision tree algorithm. Also, to improve its performance and accuracy, it was combined with multilayer perceptron neural networks optimized by genetic algorithm to select financial ratios associated with tax fraud and reduce computational overhead. The tree in the proposed model has the lowest depth possible, so it has high velocity and low computational overhead. For this purpose, the financial statements of 06companies listed in Tehran Stock Exchange during - 4330 4331were studied and 41financial ratios were extracted. By ANOVA test, 33ratios and finally by neural networks 7ratios related to tax fraud was selected as the model input data. The proposed model, with %4411accuracy, has been successful in identifying fraudulent companies with the highest accuracy and predictive power over the adaboost algorithms.

    Keywords: Tax fraud, declared tax, Improved Decision tree, Genetic algorithm, Adaboost Algorithm
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال