به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

particle swarm algorithm

در نشریات گروه علوم پایه
تکرار جستجوی کلیدواژه particle swarm algorithm در مقالات مجلات علمی
  • Hojatollah Derakhshan, Hassan Mehrmanesh *, Arefeh Fadavi Asghari
    This study aimed to present a multi-objective model for the location of depots through a particle swarm optimization algorithm in Artawheel Tire Company. It is applied in terms of purpose and survey and descriptive in terms of the nature of research and data collection. Data collection tools are documents and interviews with experts. Also, the research is of the predictive type in proportion to the fact that the research seeks to locate the depot using the particle swarm optimization algorithm. Given that this problem falls into the category of Hard-PN problems, a meta-heuristic method based on the particle swarm optimization algorithm is used to solve it. Two particle group optimization algorithms and genetics have been used as benchmark algorithms to evaluate the performance of the proposed algorithm. The proposed particle cluster optimization algorithms are implemented in the Matlab 7.5 programming software and the genetic algorithm is implemented using the Matlab 7.5 software toolbox. According to the results of this study, it was found that the use of a particle swarm algorithm to solve the problem of vehicle routing can improve the objective function as well as the total number of routes travelled by vehicles.
    Keywords: Optimization, Particle Swarm Algorithm, Location, Artawheel
  • علی اصغر آب نیکی، حسن صیادی*، محمدسعید سیف

    سامانه های سونار از جهات مختلفی از جمله کاربردهای نظامی، کشتیرانی، ماهی گیری و غیره دارای اهمیت ویژه هستند. از این رو طبقه بندی داده های سونار همواره مورد توجه متخصصان این حوزه می باشد. در این مقاله از دو روش آماده سازی داده استفاده شد. در روش اول از کل ویژگی های استخراج شده از داده ها و در روش پیشنهادی از بازه زمانی مورد استفاده برای استخراج ویژگی به صورت ده تایی میانگین گیری شد. ساختارهای مختلف شبکه عصبی مصنوعی و تلفیق شبکه عصبی با الگوریتم ازدحام ذرات (پی اس او) برای دستیابی به بالاترین عملکرد در دسته بندی امواج صوتی منتشره شناورها براساس طول شناور مورد مقایسه قرار گرفتند. نتایج نشان دادند در حالت استفاده از ویژگی های استخراج شده به صورت خام در استفاده از شبکه عصبی مصنوعی، ساختار 2-2-2 در لایه پنهان دارای بالاترین عملکرد برای شرایط آموزش و آزمون برابر با 98/61 و 90 درصد بود. با استفاده از شبکه عصبی تلفیقی دقت طبقه بندی افزایش یافته و در شرایط آزمون به میزان 94/44 درصد رسید. در استفاده از روش پیشنهادی برای آماده سازی داده های استخراج شده، ساختار ساده یک لایه با شش نرون در لایه پنهان بالاترین میزان عملکرد در طبقه بندی ویژگی های استخراج شده به میزان 100 درصد برای آموزش و آزمون را ارایه داد.

    کلید واژگان: سونار، دسته بندی شناور، شبکه عصبی، الگوریتم ازدحام ذرات
    A. Abniki, H. Sayyaadi*, M.S. Seif

    Sonar systems are of special importance in many ways, including military applications, shipping, fishing, etc. Therefore, the classification of sonar data is always of interest to experts in this field. In this article, two data preparation methods were used. In the first method, all the features extracted from the data and in the proposed method were averaged out of the time period used to extract the feature in the form of ten period. Different structures of artificial neural network and hybrid neural network were compared with particle swarm algorithm (PSO) to achieve the highest performance in classifying sounds emitted by floats based on float length. The results showed that in the case of using raw extracted features in the use of artificial neural network, the 2-2-2 structure in the hidden layer had the highest performance for training and testing conditions equal to 90.61 and 90% respectively. By using the hybrid neural network, the classification accuracy increased and reached 94.44% in the test conditions. In using the proposed method to prepare the extracted data, the simple structure of one layer with 6 neurons in the hidden layer provided the highest performance in the classification of the extracted features by 100% for training and testing.

    Keywords: Sonar, Classification of vessels, Neural network, Particle swarm algorithm
  • ابوذر محسنی پور *، بهمن سلیمانی، ایمان زحمتکش، ایمان ویسی

    تراوایی از جمله مهمترین پارامترهای پتروفیزیکی است که نقشی اساسی را در بحث های تولید و توسعه میادین هیدروکربونی دارند. در این پژوهش ابتدا نمودار تشدید مغناطیسی هسته ای در مخزن آسماری مورد ارزیابی قرار گرفت و تراوایی با استفاده از دو روش مرسوم مدل سیال آزاد(Coates) و مدل شلمبرژه یا میانگین T2 (SDR) محاسبه شد. سپس با ساخت مدل ساده شبکه عصبی مصنوعی و همچنین ترکیب آن با الگوریتم های بهینه سازی رقابت استعماری (ANN-ICA) و ازدحام ذرات (ANN-PSO) تراوایی تخمین زده شد. در نهایت نتایج حاصل با مقایسه تراوایی COATES و تراوایی SDR تخمین زده شده نسبت به مقدار واقعی، مورد بررسی قرار گرفتند و دقت تخمین از نظر مجموع مربع خطا و ضریب همبستگی مقایسه شد. نتایج حاصل از این مطالعه، بیانگر افزایش دقت تخمین تراوایی با استفاده از ترکیب الگوریتم های بهینه سازی با شبکه عصبی مصنوعی بود. نتایج حاصل از این روش می تواند به عنوان روشی قدرتمند جهت بدست آوردن سایر پارامترهای پتروفیزیکی استفاده شود.

    کلید واژگان: تراوایی، شبکه عصبی مصنوعی، الگوریتم رقابت استعماری، الگوریتم ازدحام ذرات، لاگ تشدید مغناطیس هسته ای، مخزن آسماری
    Abouzar Mohsenipour *, Bahman Soleimani, Iman Zahmatkesh, Iman veisi

    Permeability is one of the most important petrophysical parameters that play a key role in the discussion of production and development of hydrocarbon fields. In this study, first, the magnetic resonance log in Asmari reservoir was evaluated and permeability was calculated using two conventional methods, free fluid model (Coates) and Schlumberger model or mean T2 (SDR). Then, by constructing a simple model of artificial neural network and also combining it with Imperialist competition optimization (ANN-ICA) and particle swarm (ANN-PSO) algorithms, the permeability was estimated. Finally, the results were compared by comparing the estimated COATES permeability and SDR permeability with the actual value, and the estimation accuracy was compared in terms of total squared error and correlation coefficient. The results of this study showed an increase in the accuracy of permeability estimation using a combination of optimization algorithms with artificial neural network. The results of this method can be used as a powerful method to obtain other petrophysical parameters.

    Keywords: permeability, artificial neural network, Imperialist competition algorithm, particle swarm algorithm, nuclear magnetic resonance log, Asmari reservoir
  • Ali Beiranvand *, Karim Ivaz, Hamzeh Beiranvand
    This paper introduces a novel method for estimation of the parameters of the constant elasticity of variance model. To do this, the likelihood function will be constructed based on the approximate density function. Then, to estimate the parameters, some optimization algorithms will be applied.
    Keywords: Finance, Constant elasticity of variance, Likelihood function, Particle swarm algorithm, General relativity search algorithm, Nelder-Mead algorithm
  • ناهید بهرامی، مجید کیاورز، میثم ارگانی*

    بحران ها و بالای طبیعی همه ساله، کشورهای زیادی را تحت تاثیر قرار می هند و خسارات اقتصادی و جانی زیادی را متحمل آن ها می کنند. در این راستا، به اجرای روشی جهت شناسایی محدوده های آبی در پایش مرزهای آبی و شناسایی و برآورد خسارات سیلاب ها بسیار موثر باشد، پرداخته شد. در ابتدا با بررسی انجام شده، تصاویر مناسب جهت انجام پژوهش شناسایی و جمع آوری شد. در گام بعد، تلفیق با تصویر با دقت بالاتر، جهت کاهش پیکسل های مخلوط و افزایش دقت نتایج و تحلیل های حاصله از اجرای روش پیشنهادی، انجام شد. در ادامه با استفاده از بازتاب طیفی در باندهای حساس به وجود آب و مقایسه با مقدار بازتاب استاندارد شناسایی شده شده برای آب در باندهای مذکور، تصاویر احتمالی وجود آب تهیه و وارد الگوریتم بهینه یابی ازدحام ذرات که با توجه به بررسی های انجام شده و قابلیت های آن، برای انجام هدف این پژوهش مناسب شناخته شد، گردید. در نهایت با مقایسه و بهینه یابی که بر اساس تابع هدف معرفی شده در پژوهش که سعی شده تا ماهیت رفتار آب و سیلاب ها را مدنظر قرار دهد، انجام شده و نتایج به صورت بصری و آماری با دو روش طبقه بندی مورد ارزیابی قرار گرفت و بهبود نتایج حاصله از اجرای الگوریتم مشخص شد.

    کلید واژگان: الگوریتم ازدحام ذرات، بهینه یابی، تلفیق داده ها، زمانی، سیلاب، مرزهای آبی
    Nahid Bahrami, Majid Kiavarz, Meysam Argany *
    Introduction

    Iran is one of the countries that, due to its geographical location, is facing a lot of natural disasters that affect many countries and causes a lot of economic and human losses every year. In recent years, Iran has significantly exposed to floods. Because human activity has concentrated in flood-prone areas, which are often the right places to live and economic activity, there is a probability of being a lot of damage. It has caused financial and human losses. Reports of relief and crisis response from the United Nations inferred that floods should be considered one of the most severe natural disasters. The goal of the prevention of floods damage is to improve the quality of life by reducing human and public losses, both economic and environmental.
    Flood management actions can have divided into two groups: structural actions and management actions. Structural actions include the physical activities [1] for buildings and facilities to deal with floods, such as actions improving the route of the river, construction of reservoir dams, and longitudinal coastal embankments. These actions are the hardest part of dealing with floods. Management actions include a variety of precautionary actions to reduce flood damage, including land-use control and warning systems of the flood. Such actions constitute the Software aspect of confrontation in floods. These actions should have taken in three areas: flood prevention, response and reconstruction, and improvement of the damaged regions. As mentioned earlier, one of the management actions is flood warning systems to estimate the damages. In this research, have been tried a cost-effective solution to identify and evaluate and damage estimates floods created and provided to using in Flood warning systems.

    Methodology and Implication:

    Part of the Caspian Sea has selected as a suitable study area due to the presence of pure water bodies. Images of the Landsat 8 satellite, the OLI sensor, have been used as the data source to prevent the impact of various sensors. All images selected are cloudless to reduce cloud impact. To minimize time processing, a clipping of images has considered. Some of the images were to validating this purpose method. The resolution of Landsat images (30 m) is vast for identifying small pieces with mixed pixels. For the increasing spatial resolution of images, the IHS image fusion algorithm has used with the panchromatic image.
    Due to the spectral behavior of water in different bands, NIR, SWIR, and Green bands were recognized and used. March 2019 has considered due to the floods around the Caspian Sea. The study area was selected part of the Caspian Sea border, around Kiashahr near Lahijan. In the first step, to improve the accuracy of the final results, the three selective bands were combined with a panchromatic band that has twice resolution (15 m) of the above bands.
    In the next step, small areas in the deeper part of the sea that do not have cloud cover were used as the standard reflectance of water and to calculate the degree of classification error. The vector angle values of the band and the water reflectance standard value its (such as SAM method) and the distance their values were used to create the map. Probability water in each pixel, its reflectance proximity to the standard reflectance of water in the same band, will be between zero and one.
    After creating a probabilistic map of the existence of water, this map enters the optimization algorithm as a relatively simple classification. According to the goal of implementing an optimization algorithm that is detecting and extracting the water range from images, creating a map of the probability of water can be an excellent initial solution for better implementation of the algorithm. In the optimization algorithm, before the implementation of such algorithms, the objective function should be defined, and it used to the optimizing problem.
    When its value is more valuable in this problem, that is Larger value. In this research, a means of maximized value is more probability of water. Function and particle swarm algorithm coefficients have determined from the beginning of the algorithm implementation. c1, c2, φ1, φ2, and w, in the PSO algorithm structure, and k1, k2, and k3 in the objective function are coefficients whose values are determined. In the following, Relationship 1 is The function of calculating the probability map of water, Relationship 2 is the objective function [2], Relationships 3, and 4 are a function of the particle swarm algorithm [4,5].
    At each stage of implementation, the status of pixels was compared with the best solution of the objective function, if it is better than the best solution up to replace. In addition to each pixel, It will have saved the objective function calculated for the whole range. If the response was better than the optimal state of the global solution, it replaced. In this way, the answers have compared with the most optimal solution Due to defining conditions for the algorithm. Finally, after 500 repetitions, the algorithm ends. Figure 1 is a visual comparison of the proposed method and methods of SVM and k-means in the study area.
    By studying and checking the optimization algorithms, the particle swarm algorithm as a collective intelligence algorithm that takes effects of the neighborhood [5], According to the water behavior and The process of creating floods, will be advantageous. This algorithm was selected using an objective function that would cover the essential issues and considering the water probability in the points and the impact of the neighbors. To improving the usability research optimization algorithm, a relatively right initial solution was created by the probabilistic maps of the presence of water in the pixels and using spectral behavior of water and spectral reflection in the used bands.

    Conclusion

    Finally, the performance of the proposed algorithm was visually and statistically compared with several other classification methods such as SVM and k-means. The Overall Accuracy and Kappa Coefficient values calculated and compared for statistical comparison. The OA value of 98.93% for the proposed algorithm, 98.39% for SVM and 96.73% for k-means, and KC 95.6%, 91.2% and 67.8% to the proposed research algorithm, SVM and k-means. As a result, The proposed algorithm found to be useful and appropriate in this problem. Figure 2 is a statistical comparison chart of the proposed method and methods of SVM and k-means.

    Future Work:

    For future research, other techniques can be used on fusing images and compared with the used method. On the other, using radar images causes increasing accuracy and eliminating cloud effects. Using Modis satellite imagery due to its wide range of spectrum can better distinguish the components of pixels. The using meteorological satellite images to improve the time series of studies, and the quickly monitoring and predicting floods can have a good effect. And using different methods of optimization and comparison with the proposed method in this research to improve the identification and monitoring and pathology of crises such as floods, can be beneficial. Using the time series of images will also be very appropriate and efficient.

    Keywords: Data Fusion, Water body, floods, Optimization, Particle Swarm Algorithm
  • زینب دال وند، مصطفی شمسی، مسعود حجاریان*
    در این مقاله بر روی دسته خاصی از مسایل کنتر ل بهینه سیستم های ترکیبی با سوییج خودگردان تمرکز می گردد. حل عددی مسایل کنترل بهینه سوییچ خودگران، به علت تعامل میان دینامیک پیوسته وگسسته، ساده نمی باشد و روش های عددی مستقیم و غیرمستقیم ارایه شده دارای ایرادهایی، از جمله حساسیت نسبت به حدس اولیه و ناتوانی در یافتن جواب کمینه سراسری می باشند. در این مقاله برای برطرف کردن این مشکلات، کاربرد روش های فراابتکاری پیشنهاد می شوند. در این روش ابتدا از این نوع روش ها (به عنوان مثال، روشPSO) جهت تعیین دنباله مد مساله استفاده می شود؛ سپس با توجه به دنباله مد تعیین شده، یک مساله با دنباله مد معلوم به دست می آید و در نهایت با استفاده از با استفاده از روش رونوشت مستقیم ذوزنقه زمان های سوییچ، مقدار بهین تابع هدف و متغیرهای حالت و کنترل برآورد می شوند. در واقع با ارایه ی این روش به رفع چالش های اساسی حل مسایل کنترل بهینه سیستم های ترکیبی با سوییچ خودگردان که در آن ها تعداد سوییچ و دنباله مد مجهول است، می پردازیم. در پایان نتایج عددی برای یک مثال ارایه می شود.
    کلید واژگان: کنترل بهینه، سیستم ترکیبی، سوییچ خودگردان، روش های فراابتکاری، الگوریتم ازدحام ذرات
    Zeynab Dalvand, Mostafa Shamsi, Masoud Hajarian *
    In this paper, it is focused on a specific category of hybrid optimal control problems with autonomous systems. Because of existence of continuous and discrete dynamic, the numerical solutions of hybrid optimal control are not simple. The numerical direct and indirect methods presented for solving optimal control of hybrid systems have drawbacks due to sensitivity to initial guess and the inability of finding a global minimum solution. Meta-heuristic methods have been proposed. In this method, Meta-heuristic methods (e.g. using PSO) is used to determine the mode sequence, and by the attention to the prescribed the mode sequence, a problem with a determinate mode sequence is obtained, and then the switching times, the optimal value of the target function and the state and control are estimated by using the direct approach. Actually, using the proposed model, we will eliminate basic challenges of solving optimal control of hybrid autonomous systems problems, in which the number of switches and mood sequence are unknown .Finally, numerical results for solving an example presented.
    Keywords: optimal control, hybrid system, autonomous switch, heuristic methods, Particle Swarm Algorithm
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال