fuzzy programming
در نشریات گروه ریاضی-
In the real world, the parameters of a problem may not be the crisp values. The fuzzy theory among the theories in which uncertainty plays a crucial role. Type-2 fuzzy sets generalize fuzzy sets. We consider a special type of such sets here. In this paper, we consider two issues. First, we review the method proposed by Javanmard and Mishmast Nehi for solving an interval type-2 triangular fuzzy linear programming problem, and improve it. Then, we express a bilevel linear programming problem, that, to the best of our knowledge, has not been investigated so far. We consider the bilevel linear programming problem with uncertainty where all the coefficients in the problem are interval type-2 triangular fuzzy numbers. We convert an interval type-2 triangular fuzzy bilevel linear programming problem into an interval bilevel linear programming problem using Grzegorzewski's nearest interval approximation method. Finally, we obtain five problems, and by solving them, we achieve the solution of interval type-2 triangular fuzzy bilevel linear programming problem as an interval type-2 triangular fuzzy number.
Keywords: Fuzzy programming, bilevel linear programming, interval type-2 fuzzy number -
در این مقاله با استفاده از الگوریتم بهینه سازی گرگ خاکستری به حل مسیله برنامه ریزی بهینهشبکه توزیع در حضور پارکینگ های هوشمند خودروهای برقی در سطح شبکه پرداخته می شود.تابع هدف مسیله برنامه ریزی بهینه شبکه توزیع در حضور خودروهای برقی کمینه نمودن هزینهبرنامه ریزی شبکه شامل هزینه توان تحویلی خودروهای برقی، بهبود تقاضای بار شبکه شاملکاهش بار پیک شبکه و درنهایت بهبود پروفایل ولتاژ سیستم می باشد. به منظور حل مسیلهچند هدفه از روش فازی برای آن استفاده شده است و توابع فازی برای هر تابع هدف استخراجحل می شود. شبکه نمونه توزیع 54 باسه استاندارد Max−Min می شود و به کمک عملگربه عنوان شبکه مورد مطالعه در نظر گرفته شده و طرح های توسعه شبکه در دو حالت با IEEEو بدون حضور خودروهای برقی با یکدیگر مقایسه می شوند. نتایج نشان می دهد که هزینه کلیبهره برداری و پروفایل ولتاژ سیستم برای حالت شارژ و دشارژ هوشمند به ترتیب تقریب ا 9 و 31درصد کاهش را در مقایسه با حالت پایه بهره برداری شبکه خواهد داشت.کلید واژگان: برنامه ریزی فازی، بهینه سازی، الگوی مصرف، گرگ خاکستریCurrently, with the development of energy production technologies, increased attention to environmental issues andInterest to improve the reliability of electrical energy distribution networks, the possibility and the necessary motivation forChanging the distribution networks from passive to active mode and the desire to produce renewable energyThe level of distribution systems is provided. In this article, using the wolf optimization algorithmTo solve the problem of optimal planning of the distribution network in the presence of gray smart parking lots (GWO).Electric cars are paid at the network level. The objective function of the distribution network optimal planning problemIn the presence of electric vehicles, minimizing the cost of network planning, including the cost of network operation,The cost of power delivered by electric vehicles, reducing system losses, improving the quality of network power includedReducing the network peak load and improving the load consumption pattern. In order to solve the multi-objective problemFuzzy method is used for it and fuzzy functions are extracted for each objective functionIt resolves to IEEE. Sample distribution network of 54 standard buses Ⅿax−Ⅿin and with the help of operatorThe title of the studied network is considered and the network development plans in two modes with and withoutThe presence of electric cars are compared to each other.Keywords: fuzzy programming, optimization, demand pattern, Grey wolf
-
Data envelopment analysis (DEA) is a method to estimate a relative efficiency of decision making units (DMUs) performing similar tasks in a production system that consumes multiple inputs to produce multiple outputs. The original DEA model does not include a decision maker’s (DM’s) preference structure while measuring relative efficiency. Regarding to relationship between DEA and multiple objective linear programming (MOLP) this paper propose a method based on fuzzy goal programming to incorporate DM’s wishes in evaluation of DMUs then it analyzes the situations that the input-output levels of the estimated benchmark will not or may worsen. A compromised method is suggested that not only considers DM’s wishes in target setting but also improve the efficiency of DMUs while none of input-output levels deteriorate.
Keywords: Data envelopment analysis, goal programming, Fuzzy programming, Target setting -
لجستیک امدادی و زنجیره تامین بشردوستانه در ادبیات دانشگاهی به فرایند برنامه ریزی، اجرا و کنترل اثربخش جریان هزینه ها و اطلاعات و ذخیره سازی کالاها و مواد موردنیاز از نقطه مبدا تا مصرف اطلاق می شود به گونه ای هدف اصلی آن کاهش و تسکین درد و رنج مردم حادثه دیده می باشد. در این مقاله به ارایه یک مدل چندهدفه برای مسئله مکانیابی- مسیریابی چند دوره ای با در نظر گرفتن تخلیه مصدومین و افراد بی خانمان و مسیرهای فازی در لجستیک امداد پرداخته شد. ابتدا یک مدل چندهدفه غیرقطعی از مسئله تحت پارامترهای غیرقطعی تقاضا، زمان و ظرفیت حمل ونقل طراحی و سپس با استفاده از روش برنامه ریزی فازی به کنترل پارامترهای غیرقطعی مساله پرداخته شد. با توجه به NP-سخت بودن مسئله و عدم توانایی نرم افزار GAMS برای حل مدل در سایزهای بزرگ تر از الگوریتم های فرا ابتکاری NSGA-II و MOPSO برای حل مساله استفاده شد.کلید واژگان: لجستیک امدادی، برنامه ریزی فازی، عدم قطعیت، الگوریتم های فرا ابتکاریThe relief logistics and humanitarian supply chain in academic literature refer to the process of planning, execution, and effective controlling of the flow of costs and information and storage of necessary goods and materials from the point of origin to consumption with the primary purpose of reducing and relieving the affected people suffer. This paper discusses a multi-objective model for multi-period location-distribution-routing problems considering the evacuation of casualties and homeless people and fuzzy paths in relief logistics. Firstly, an uncertain multi-objective model of the problem was developed based on uncertain parameters of demand, time, and transport capacity, and then, using the fuzzy programming method, uncertain parameters of the problem were controlled. As the problem is NP-hard and GAMS software has not able to solve the model in larger sizes, meta-heuristic algorithms of NSGA-II and MOPSO were used to solve the problem.Keywords: Relief logistics, Fuzzy programming, Uncertainty, Meta-heuristic algorithm
-
International Journal Of Nonlinear Analysis And Applications, Volume:13 Issue: 1, Winter-Spring 2022, PP 539 -553
Due to the nature of activities and processes, the petrochemical industry causes the production of industrial effluents, emissions and wastes that have adverse effects on the environment. The purpose of this study is to investigate the effect of petrochemical economic activities on environmental factors. In this paper, in order to minimize the costs and the amount of pollution caused by the emission of harmful gases, the closed-loop green supply chain model has been used, in which direct and reverse logistics networks have been considered. As a result, a fuzzy mathematical programming model has been developed for when the data are not definitively known. After the demand parameters and the amount of pollution are considered fuzzy, the maximum and bisector mean methods of the area are considered as methods (diffusion) of comparison and ranking of fuzzy definite numbers, and by adding Limitations of these two methods, the model was developed. To solve the model with real data, a plant from the petrochemical industry was selected and the data were prepared for a solution with very good estimates. Finally, the colonial competition algorithm was used to solve it. According to the model, its applicability was shown to reduce the number of environmental pollutants along with the reduction of transportation and waste, and the model for the closed-loop supply chain, which simultaneously considers two direct and inverse logistics networks. It is appropriate.
Keywords: Fuzzy programming, Environmental pollutants, Petrochemical, Colonial competitionalgorithm -
Appointment scheduling for outpatient services is a challenge in the healthcare sector. For addressing this challenge, most studies assumed that patients’ unpunctuality and the duration of service have constant values or a specific probability distribution function. Consequently, there is a research gap to consider the uncertainty of both patients’ unpunctuality and the duration of service in terms of fuzzy sets. Therefore, this research aims to consider fuzzy values for both unpunctuality and duration of service have to improve an outpatient appointment scheduling (the time interval between two patients) in a referral clinic with the objective of reducing the total weight of waiting time, idle time, and overtime. Four different fuzzy linear programming models and 36 scenarios have been developed based on the show, no-show of patients, single-book, and double-book by using GAMS software. These four models are as follows: (1) probability of no-show equal to zero, (2) probability of no-show equal to 20%, (3) probability of no-show equal to zero and with double-book factor, and (4) probability of no-show equal to 20% and with double-book factor. The results of the first, second, third, and fourth models, respectively, present the scenarios considering 10, 5, 15, and 15 minutes for the time interval between two patients that have the minimum total weight of patient waiting times, physician idle times, and physician overtime. By considering these findings, the investigated referral clinic can improve its appointment system’s performance. Moreover, other similar clinics can apply the proposed model for improving their appointment systems' performance.
Keywords: Appointment scheduling, Fuzzy programming, unpunctuality, no-show, healthcare -
برنامه ریزی احتمالی یا تصادفی، چارچوبی برای مدلسازی مسایل بهینه سازی است که با عدم اطمینان سروکار دارند. در این مقاله، تمرکز ما روی مسایل برنامه ریزی چند هدفه ای است که در آنها ضرایب قیود و بردار سمت راست، متغیرهای تصادفی فازی هستند. روش های متعددی در مقالات برای تبدیل این مسایل به مسایل فازی یا مسایل تصادفی وجود دارد. ما مسئله را با استفاده از نوع خاصی از نامساوی فازی، به یک مسئله تصافی ساده تبدیل میکنیم. سپس روش های متداول را برای بدست آوردن جواب بهینه به کار میگیریم. در انتها، مسئله چند هدفی معادل را با یک روش تعاملی حل می کنیم. یک مثال عددی برای فرایند مذکور آورده شده است.
Probabilistic or stochastic programming is a framework for modeling optimization problems that involve uncertainty.In this paper, we focus on multi-objective linear programmingproblems in which the coefficients of constraints and the righthand side vector are fuzzy random variables. There are several methodsin the literature that convert this problem to a stochastic orfuzzy problem. By using a special type of fuzzy inequality, wetransform the problem into a convenient stochastic problem. Thensome known methods are applied to obtain the optimal solution.Finally, the equivalent multi-objective problem is solved by aninteractive approach. A numerical example is provided to illustrate the procedure.
Keywords: Multi-objective programming, Stochastic programming, Fuzzy programming, interactive algorithm -
This paper deals with a class of bi-level linear programming problem (BLPP) with fuzzy data. Fuzzy data are mainly considered to design the real-life BLPP. So we assume that the coefficients and the variables of BLPP are trapezoidal fuzzy numbers and the corresponding BLPP is treated as fuzzy BLPP (FBLPP). Traditional approaches such as vertex enumeration algorithm, Kth-best algorithm, Krush-Kuhn-Tucker (KKT) condition and Penalty function approach for solving BLPP are not only technically inefficient but also lead to a contradiction when the follower’s decision power dominates to the leader’s decision power. Also these methods are needed to solve only crisp BLPP. To overcome the difficulty, we extend Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) in fuzzy environment with the help of ranking function. Fuzzy TOPSIS provides the most appropriate alternative solution based on fuzzy positive ideal solution (FPIS) and fuzzy negative ideal solution (FNIS). An example is included how to apply the discussed concepts of the paper for solving the FBLPP.Keywords: Bi-level linear programming, Fuzzy programming, TOPSIS, Compromise solution
-
International Journal of Mathematical Modelling & Computations, Volume:5 Issue: 1, Winter 2015, P 91This paper presents a Taylor series approach for solving linear fractional de- centralized bi-level multi-objective decision-making (LFDBL-MODM) problems with a single decision maker at the upper level and multiple decision makers at the lower level. In the proposed approach, the membership functions associated with each objective(s) of the level(s) of LFDBL-MODM are transformed by using a Taylor series and then they are unified. On using the Kuhn-Tucker conditions, the problem is finally reduced to a single objective. Numerical example is given in order to illustrate the efficiency and superiority of the proposed approach.Keywords: Bilevel programming, Fractional programming, Fuzzy Programming, Kuhn, Tucker conditions, Taylor series
-
The linear multiobjective transportation problem is a special type of vector minimum problem in which constraints are all equality type and the objectives are conicting in nature. This paper presents an application of fuzzy goal programming to the linear multiobjective transportation problem. In this paper, we use a special type of nonlinear (hyperbolic and exponential) membership functions to solve multiobjective transportation problem. It gives an optimal compromise solution. The obtained result has been compared with the solution obtained by using a linear membership function. To illustrate the methodology some numerical examples are presented.Keywords: Multiobjective decision making, Goal programming, Transportation problem, Membership function, Fuzzy programming
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.