bayesian inference
در نشریات گروه ریاضی-
International Journal Of Nonlinear Analysis And Applications, Volume:14 Issue: 4, Apr 2023, PP 15 -36
The aim of this study is on using Bayesian inference to analyze right-censored healthcare data using Frechet and exponential baseline proportional hazard (PH) models. For the baseline hazard parameters, a gamma prior was used, and for the regression coefficients, normal priors were used. The exact form of the joint posterior distribution was obtained. Bayes estimators of the parameters are obtained using the Markov chain Monte Carlo (MCMC) simulation technique. Two real-survival data applications were analyzed by the Frechet PH model and the exponential PH model. The convergence diagnostic tests are presented. We found that the Frechet PH model was better than the exponential PH model because it is flexible and could be beneficial in analyzing survival data.
Keywords: Proportional hazards model, Frechet distribution, exponential distribution, Bayesian inference, MCMC -
International Journal Of Nonlinear Analysis And Applications, Volume:13 Issue: 1, Winter-Spring 2022, PP 2137 -2149
latent variable models define as a wide class of regression models with latent variables that cannot be directly measured, the most important latent variable models are structural equation models. Structural equation modeling (SEM) is a popular multivariate technique for analyzing the interrelationships between latent variables. Structural equation models have been extensively applied to behavioral, medical, and social sciences. In general, structural equation models includes a measurement equation to characterize latent variables through multiple observable variables and a mean regression type structural equation to investigate how the explanatory latent variables affect the outcomes of interest. Despite the importance of the structural equations model, it does not provide an accurate analysis of the relationships between the latent variables. Therefore, the quantile regression method will be presented within the structural equations model to obtain a comprehensive analysis of the latent variables. we apply the quantile regression method into structural equation models to assess the conditional quantile of the outcome latent variable given the explanatory latent variables and covariates. The posterior inference is performed using asymmetric Laplace distribution. The estimation is done using the Markov Chain Monte Carlo technique in Bayesian inference. The simulation was implemented assuming different distributions of the error term for the structural equations model and values for the parameters for a small sample size. The method used showed satisfactorily performs results.
Keywords: Bayesian inference, latent variable models, structural equations model, quantile regression -
در روند بررسی و شناخت جوامع آماری، تحلیل داده های به دست آمده از این جوامع، امری مهم و ضروری تلقی می شود. یکی از روش های مناسب در تحلیل داده ها، بررسی ساختاری تابع برازش شده به وسیله این داده ها است. تبدیل موجک، یکی از ابزارهای بسیار قوی در تحلیل چنین توابع است و ساختار ضرایب موجک اهمیت خاصی دارد. در این مقاله، ضمن معرفی تبدیل موجک و فرآیند خود برگشتی میانگین متحرک با حافظه طولانی مدت، ساختار ماتریس کوواریانس موجکی این فرآیند بررسی و سپس پارامترهای این مدل به روش بیزی وبر پایه موجک ها برآورد می شوند. در پایان با استفاده از شبیه سازی، عملکرد و کارایی برآورد پیشنهادی، در مقایسه با دو روش برآوردیابی دیگر ارزیابی می شود. نتایج نشان دهنده عملکرد خوب این روش هست.
کلید واژگان: تبدیل موجک، ضرایب موجکی، حافظه طولانی مدت، استنباط بیزیIntroductionThe data obtained from observing a phenomenon over time is very common. One of the most popular models in time series and signal processing is the Autoregressive moving average model (ARMA). If the investigated time series has long memory, autoregressive fractional moving average model or in other words (ARFIMA), would be appropriate. The ARFIMA (p, d, q) model was first introduced by [1]. Classic methods for modeling, inference and estimating these processes lead to complex calculations of covariance structure and likelihood functions that make data processing difficult.Wavelet transform is one of the most powerful tools in analyzing such functions and best performs these functions from different time and location perspectives as well as high and low frequencies. Wavelet transform due to the decreasing correlation property is a very efficient method in analysis and inference for estimating long-term memory processes.The values obtained from wavelet transforms for long-term memory processes, in spite of the complex covariance structure of these processes, the wavelet coefficients are almost uncorrelated and thus much easier to handle [2]. The dense covariance structure of such processes makes it difficult to accurately calculate the maximum likelihood function of data sets [3]. In these cases, the Bayesian method can be easily used to calculate wavelet coefficients. In this paper, while briefly introducing wavelet transform in section two, the ARFIMA model and covariance matrix structure of this model is investigated in section three. In section four, theBayesian estimation of ARFIMA parameters based on wavelets are calculated. At the end section, we survey the theoretical outcomes with numerical computation by using simulation to described purpose estimation.
Material and methodsIn this scheme, first we explain wavelet transformation, ARFIMA model and covariance matrix structure of this model. By using wavelet decomposition, Bayesian estimation of ARFIMA model parameters are calculated. The performance of purpose estimation is assessed with simulated data for comparing with respect to another estimators.
Results and discussionWe discuss in detail wavelet transformation and autoregressive fractional moving average model with long memory. The structure of covariance matrices of wavelet coefficients and Bayesian wavelet estimation of parameters are investigated.
At the end we used simulation study to examine our proposed estimation. Notice that, obtained results confirm that proposed estimation is better than another.ConclusionThe following conclusions were drawn from this research.Wavelet transform due to the decreasing correlation property is very efficient method in estimating long-term memory processes. The main purpose of this paper is to provide a new wavelet estimation of ARFIMA model parameters via Bayesian method.The main characteristic of this method is that it can be easily used and therefore many calculations are reduced.The proposed method can be applied for estimating of parameters in the simulation.According to the figures, we conclude that Bayesian wavelet estimation of autoregressive process parameters is appropriate and better than with respect to other estimations.According to the table, by increasing the sample size, standard error of proposed estimator is decreased, so it was shown that the new proposed method is better with respect to others.
Keywords: Wavelet transformation, Wavelet coefficients, Long term memory, Bayesian inference -
بررسی داده های طولی قسمت مهمی از پژوهش های ایپدمیولوژی، بررسی های بالینی و تحقیقات اجتماعی را شامل می شود. در بررسی های طولی، اندازه گیری پاسخ ها به طور مکرر در طول زمان انجام می شود. اغلب هدف اصلی تشخیص تغییر در متغیر پاسخ در طول زمان و عواملی است که روی این تغییر اثر می گذارند. اخیرا به رگرسیون چندکی برای تجزیه و تحلیل این نوع داده ها توجه شده است. در این مقاله مدل رگرسیون چندکی با ایجاد تاوان الاستیک نت سازوار روی اثرهای تصادفی برای داده های طولی ارائه شده و از دیدگاه آمار بیزی تجزیه و تحلیل می شود. چون در این روش توزیع پسینی پارامترها به شکل بسته قابل حصول نیستند، از این رو، توزیع های پسینی شرطی کامل پارامترها محاسبه شده و ازالگوریتم نمونه گیری گیبس برای استنباط استفاده می شود. برای مقایسه کارایی روش ارائه شده با روش های متداول، بررسی شبیه سازی انجام شده و در پایان نحوه کاربست مدل ها در قالب مثال کاربردی شرح داده می شود.کلید واژگان: رگرسیون چندکی، داده های طولی، تاوان الاستیک نت سازوار، اثرهای تصادفی، استنباط بیزیLongitudinal studies include the important parts of epidemiological surveys, clinical trials and social studies. In longitudinal studies, measurement of the responses is conducted repeatedly through time. Often, the main goal is to characterize the change in responses over time and the factors that influence the change. Recently, to analyze this kind of data, quantile regression has been taken into consideration. In this paper, quantile regression model, by adding an adaptive elastic net penalty term to the random effects, is proposed and analyzed from a Bayesian point of view. Since, in this model posterior distribution of the parameters are not in explicit form, the full conditional posterior distributions of the parameters are calculated and the Gibbs sampling algorithm is used for deduction. To compare the performance of the proposed method with the conventional methods, a simulation study was conducted and at the end, applications to a real data set are illustratedKeywords: Adaptive elastic net penalty, Bayesian inference, Longitudinal data, Quantile regression, Random effects
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.