convex functions
در نشریات گروه ریاضی-
This study investigates the geometric characteristics of integral operators connected with the Pascal distribution series. The objective of this article is to establish conditions on the parameters of these operators by utilizing coefficient bounds from class $\mathcal{R}_{\wp,\upsilon}^{\tau}(\gamma)$. Also, the study analyzes the inclusion outcomes of integral operators related to the Pascal distribution series within various subclasses of analytic functions. The findings presented here incorporated previously published results as specific instances.Keywords: Univalent Functions, Starlike Functions, Convex Functions, Spirallike Functions, Pascal Distribution Series
-
In this paper, we investigate the Bullen inequality in the context of fractional integrals with exponential kernels. Building upon the foundational works in the field, we first introduce a new integral identity. From this identity, we derive several novel Bullen-type inequalities for differentiable convex functions. To validate our theoretical findings, we provide a numerical example along with graphical representations, demonstrating the accuracy and applicability of our results. The results obtained are not only new for the fractional integrals considered in our study, but as \(\alpha\) approaches 1, we also derive additional novel results for the classical integral.Keywords: Fractional Integrals With Exponential Kernels, Bullen-Type Inequalities, Convex Functions, Holder's Inequality, Power Mean Inequality
-
International Journal Of Nonlinear Analysis And Applications, Volume:16 Issue: 7, Jul 2025, PP 17 -25
In this paper, we introduce the subclass $\mathcal{K}\mathcal{S}(\alpha)$ of univalent functions in $\mathcal{A}$ and study some properties of this class. We apply matters of differential subordinations, to investigate some results concerning the subclasses $\mathcal{K}\mathcal{S}(\alpha)$ and $\mathcal{B}\mathcal{S}(\alpha)$ of $\mathcal{A}$, where $\alpha \in [0,1)$.
Keywords: Starlike Functions, Convex Functions, Differential Subordination, Booth Lemniscate -
The main objective of this paper is to establish some new inequalities related to the open Newton-Cotes formulas in the setting of q-calculus. We establish a quantum integral identity first and then prove the desired inequalities for $q$-differentiable convex functions. These inequalities are useful for determining error bounds for the open Newton-Cotes formulas in both classical and $q$-calculus. This work distinguishes itself from existing studies by employing quantum operators, leading to sharper and more precise error estimates. These results extend the applicability of Newton-Cotes methods to quantum calculus, offering a novel contribution to the numerical analysis of convex functions. Finally, we provide mathematical examples and computational analysis to validate the newly established inequalities.Keywords: Open Newton-Cotes Formulas, Convex Functions, Q-Calculus, Fractional Inequalities
-
International Journal Of Nonlinear Analysis And Applications, Volume:15 Issue: 8, Aug 2024, PP 53 -64In this investigation, using Opoola differential operator ($D^{m}(\mu,\beta,t)f(z)$), a new integral operator: $I_{t,\beta,\mu}^{m,\sigma}(f_{1},...,f_{n})(z): A^{n}\rightarrow A$ is defined in the unit disk, $U=\left\lbrace z\in C:\left|z\right|<1\right\rbrace$; and we investigated the Univalence conditions of this generalized operator. Finally, a number of corollaries and remarks which show the extension of our results are presented.Keywords: Analytic Functions, Univalent Functions Starlike Functions, Convex Functions, Close-To-Convex Functions, Integral Operator
-
In this paper, we are introducing for the first time a generalized class named the class of $(\alpha,\beta,\gamma,\delta)-$convex functions of mixed kind. This generalized class contains many subclasses including the class of $(\alpha,\beta)-$convex functions of the first and second kind, $(s,r)-$convex functions of mixed kind, $s-$convex functions of the first and second kind, $P-$convex functions, quasi-convex functions and the class of ordinary convex functions. In addition, we would like to state the generalization of the classical Ostrowski inequality via fractional integrals, which is obtained for functions whose first derivative in absolute values is $(\alpha,\beta,\gamma,\delta)-$ convex function of mixed kind. Moreover, we establish some Ostrowski-type inequalities via fractional integrals and their particular cases for the class of functions whose absolute values at certain powers of derivatives are $(\alpha,\beta,\gamma,\delta)-$ convex functions of mixed kind using different techniques including H\"older's inequality and power mean inequality. Also, various established results would be captured as special cases. Moreover, the applications of special means will also be discussed.Keywords: Ostrowski inequality, Convex functions, Power mean inequality, Hölder's inequality
-
International Journal Of Nonlinear Analysis And Applications, Volume:14 Issue: 4, Apr 2023, PP 63 -76
This work introduces the quantum analogue of the dual Simpson type integral inequalities for the class of q-differentiable convex functions through a new identity. The results are also accompanied by their applications.
Keywords: Dual Simpson inequality, q-derivatives, q-integrals, convex functions -
In this paper we introduce a new sequence of mappings in connection to Hermite-Hadamard type inequality. Some bounds and refinements of Hermite-Hadamard inequality for convex functions via this sequence are given
Keywords: Hermite-Hadamard inequality, Jensen inequality, convex functions -
International Journal Of Nonlinear Analysis And Applications, Volume:14 Issue: 1, Jan 2023, PP 121 -130The purpose of this article is to make a connection between the Pascal distribution series and some subclasses of normalized analytic functions whose coefficients are probabilities of the Pascal distribution. To be more precise, we investigate such connections with the classes of parabolic starlike and uniformly convex functions with positive coefficients in the open unit disk $\mathbb{U}.$Keywords: Starlike functions, Convex functions, Uniformly Starlike functions, Uniformly Convex functions, Hadamard product, Pascal distribution series
-
International Journal Of Nonlinear Analysis And Applications, Volume:14 Issue: 1, Jan 2023, PP 1063 -1069In this article, some integral equations are obtained and based on these integral equations, new integral inequalities are obtained for convex functions that satisfy certain convexity conditions.Keywords: Convex functions, Quasi-convex functions, Functional inequalities, H{o}lder integral inequality, Power mean integral inequality, Hermite-Hadamard type inequality
-
We first construct new Hermite-Hadamard type inequalities which include generalized fractional integrals for convex functions by using an operator which generates some significant fractional integrals such as Riemann-Liouville fractional and the Hadamard fractional integrals. Afterwards, Trapezoid and Midpoint type results involving generalized fractional integrals for functions whose the derivatives in modulus and their certain powers are convex are established. We also recapture the previous results in the particular situations of the inequalities which are given in the earlier works.Keywords: Hermite-Hadamard inequalities, Generalized fractional integrals, Convex functions
-
در این مقاله بعد از معرفی خاصیت m −محدب توسط تادر به عنوان یک خاصیت میانی بین تحدب کلی وستاره شکل، نامساوی انتگرال هرمیت‐هادامارد را برای تابع (m, α) −محدب در قالب جدید بیان و ثابت می کنیم.نتایج قبلی در مورد نامساوی هرمیت ‐ هادامارد برای توابع m −محدب بخشی از نتایج قضایای مایند. مثال هایی درخصوص توابع (m, α) −محدب و m −محدب نیز در مقاله گنجانده شده است.کلید واژگان: نامساوی انتگرالی هرمیت - هادامارد، تابع m-محدب، تابع محدبIn this paper, after introducing the $m$-convexity by Toader, as an intermediate among the general convexity and star shaped property, we bring Hermite-Hadamard integral inequality on $(\alpha,m)$-convex function in the new form. Previous results about the Hermite-Hadamard inequality for $m$-convex functions are part of the results of our theorems. Illustrated examples of $(\alpha,m)$-convex and $m$-convex functions are also included in the article.Keywords: Hermite-Hadamard integral inequality, -convex function, convex functions
-
یکی از مباحث بسیار مهم و جذاب در نظریه توابع هندسی، رده های توابع ستاره گون و محدب ما-میندا بر قرص واحد $\mathbb{D}=\left\{z\in \mathbb{C}\colon |z|<1 \right\}$ می باشند که به کمک رابطه تبعیت تعریف شده اند. فرض می کنیم $\mathcal {A}$ رده توابع تحلیلی بر قرص واحد $\mathbb {D}$ در صفحه مختلط $\mathbb {C}$ که با $f (0)=f' (0)-1=0$ نرمالیزه شده و رده های $\ mathcal{ST}_N(s)$ و $ \mathcal{CV}_N (s)$ نمایش خانواده ای از توابع ستاره گون و محدب ما-میندا $f\in \mathcal{A}$ باشند به طوری که برای هر $z\in \mathbb{D}$، کمیت های $zf' (z)/f (z)$ و $1+zf''(z)/f' (z)$ در داخل دامنه کران دار به ناحیه نفرویید \[\left[(u-1)^2+v^2-4s^2\right]^3=108s^4v^2, \quad 0<s\le \frac {\sqrt{2}}{4}\] باشند. در این مقاله، برخی خواص و ویژگی های رده های $\mathcal{ST}_N(s)$ و $\mathcal {CV}_N (s)$ تعریف شده از نوع ما-میندا، مانند ساختار توابع در این رده ها، توابع اکسترمال، قضیه رشد، دگرشکلی و قضیه دوران را مورد مطالعه قرار می دهیم.
کلید واژگان: توابع تک ارز، توابع ستاره گون و محدب، تبعیت، دامنه محدود به نفروئیدOne of the most important and interesting topics in the geometric function theory is the classes of starlike and convex functions of Ma-Minda type on the unit disk D = {z ∈ C: |z| < 1} which are defined by subordination. Let A be the class of functions f, analytic in the unit disc D = {z : |z| < 1} on the complex plane C, with the normalization f(0) = f 0 (0) − 1 = 0, and ST N (s) and CVN (s) be a family of starlike and convex functions f ∈ A so that for each z ∈ D, such that the quantity zf0 (z)/f(z) or 1 + zf00(z)/f0 (z) respectively are lying in the region bounded by the Nephroid (u − 1)2 + v 2 − 4s 2 3 = 108s 4 v 2 , 0 < s ≤ √ 2 4 . In this paper, some properties and characteristics of classes ST N (s) and CVN (s) defined by the Ma-Minda type, like the structure of functions in these classes, we study extreme functions, growth theorem, distoration, and rotation theorem.
Keywords: Univalent functions, Starlike, convex functions, Subordination, domain bounded by Nephroid -
International Journal Of Nonlinear Analysis And Applications, Volume:13 Issue: 2, Summer-Autumn 2022, PP 103 -116
In this paper, several novel inequalities are examined for the product of two s-convex functions in the fourth sense. Also, some applications regarding special means and digamma functions are presented.
Keywords: Convex functions, s−Convexity, s-Convex functions in the fourth sense, Product two convex functions, Hermite-Hadamard type inequality, Specials means, Digamma function -
Let $f$ be a convex function on $I$ and $a,$ $bin I$ with $a<b.$ If $p:% left[ a,bright] rightarrow lbrack 0,infty )$ is Lebesgue integrable and symmetric, namely $pleft( b+a-tright) =pleft( tright) $ for all $tin % left[ a,bright] ,$ then we show in this paper that begin{align*} 0& leq frac{1}{2}int_{a}^{b}leftvert t-frac{a+b}{2}rightvert pleft( tright) dtleft[ f_{+}^{prime }left( frac{a+b}{2}right) -f_{-}^{prime }left( frac{a+b}{2}right) right] \ & leq int_{a}^{b}pleft( tright) fleft( tright) dt-left( int_{a}^{b}pleft( tright) dtright) fleft( frac{a+b}{2}right) \ & leq frac{1}{2}int_{a}^{b}leftvert t-frac{a+b}{2}rightvert pleft( tright) dtleft[ f_{-}^{prime }left( bright) -f_{+}^{prime }left( aright) right] end{align*} and begin{align*} 0& leq frac{1}{2}int_{a}^{b}left[ frac{1}{2}left( b-aright) -leftvert t-frac{a+b}{2}rightvert right] pleft( tright) dtleft[ f_{+}^{prime }left( frac{a+b}{2}right) -f_{-}^{prime }left( frac{a+b}{% 2}right) right] \ & leq left( int_{a}^{b}pleft( tright) dtright) frac{fleft( aright) +fleft( bright) }{2}-int_{a}^{b}pleft( tright) fleft( tright) dt \ & leq frac{1}{2}int_{a}^{b}left[ frac{1}{2}left( b-aright) -leftvert t-frac{a+b}{2}rightvert right] pleft( tright) dtleft[ f_{-}^{prime }left( bright) -f_{+}^{prime }left( aright) right] . end{align*}.
Keywords: Convex functions, Integral inequalities, Hermite-Hadamard inequality, Féjer's inequalities -
We extend the definitions of $nabla-$convex and completely monotonic functions for two variables. Some general identities of Popoviciu type integrals $int P(y)f(y) dy$ and $int int P(y,z) f(y,z) dy dz$ are deduced. Using obtained identities, positivity of these expressions are characterized for higher order $nabla-$convex and completely monotonic functions. Some applications in terms of generalized Cauchy means and exponential convexity are given.Keywords: Convex functions, $nabla-$convex functions, completely monotonic functions
-
International Journal Of Nonlinear Analysis And Applications, Volume:12 Issue: 2, Summer-Autumn 2021, PP 2153 -2159
In this article, we introduce the notion of $(h,k)$-convex functions and their operator form. Moreover, we derive Hermite–Hadamard-type, and Fejer-type inequalities for this class.
Keywords: convex functions, Hermite-Hadamard inequality, operator convex functions -
The purpose of this paper is to define a new class of analytic, normalized functions in the open unit disk D = {z : z ∈ C and |z| < 1} subordinating with crescent shaped regions, and to derive certain coefficient estimates a2 , a3 and Fekete-Szeg¨o inequality for f ∈ Mq(α, β, λ). A similar result have been done for the function f −1 . Further application of our results to certain functions defined by convolution products with a normalized analytic function is given, in particular we obtain FeketeSzeg¨o inequalities for certai
Keywords: Analytic functions, Starlike functions, Convex functions, Subordination, Fekete-Szeg¨o inequality, Poisson distribution series, Hadamard product -
International Journal of Mathematical Modelling & Computations, Volume:10 Issue: 3, Summer 2020, PP 227 -238
In this paper, the authors establish inequalities of the Hermite-Hadamard-Mercer type for convex functions by applying k-fractional integrals. We prove some new fractional inequalities connected to the left part of Hermite-Hadamard-Mercer type inequalities for differentiable mappings whose first derivatives in absolute value are convex.
Keywords: Convex functions, Hermite-Hadamard inequalities, Jensen-Mercer inequality, k-Riemann-Liouville fractional integrals -
In the present paper, we introduce and investigate three interesting superclasses SD, SD* and KD of analytic, normalized and univalent functions in the open unit disk D. For functions belonging to these classes SD, SD* and KD, we derive several properties including (for example) the coefficient bounds and growth theorems. The various results presented here would generalize many well known results. We also get a new univalent criterion and some interesting properties for univalent function,starlike function,convex function and close-to-convex function. Many superclasses which are already studied by various researchers are obtained as special cases of our two new superclasses.
Keywords: Univalent functions, starlike functions, Convex functions, Close-to-convex function
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.