به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

integer programming

در نشریات گروه ریاضی
تکرار جستجوی کلیدواژه integer programming در نشریات گروه علوم پایه
  • مهدی جهانگیری*

    ویژگی ذاتی داده های دنیای واقعی عدم قطعیت و نامعین بودن است. اگر داده ها در آزمایش های معتبر یا گردآوری های استاندارد تولید شوند، نظریه احتمال یا نظریه فازی ابزاری قوی برای تحلیل و واکاوی در شرایط عدم قطعیت است. اما همیشه داده ها قابل اعتماد و اتکا نیستند به ویژه زمانی که امکان انجام دادن چندین باره یک آزمایش یا گردآوری مطمین داده ها وجود نداشته باشد. در این شرایط، رجوع به باور خبرگان حوزه مورد بحث یک رویکرد جایگزین است و نظریه عدم قطعیت ابزاری است که می توان توسط آن، باور متخصصان را به صورت ریاضی وارد ساختار حل مساله کرد. عدم قطعیت به طور معمول در مدل مساله های کاربردی مانند مسایل بهینه سازی ترکیبیاتی دیده می شود. از این نوع مسایل می توان به یافتن مجموعه پایدار یک گراف اشاره کرد. مجموعه پایدار دارای طیف گسترده ای از کاربردها در بسیاری از زمینه ها است، در حالی که در اغلب موارد، مساله های مربوط به آن بدون داده های قابل اعتماد هستند. در این مقاله به بررسی یافتن مجموعه پایدار وزن دار با وزن های غیرقطعی می پردازیم. این وزن ها دارای توزیع غیرقطعی هستند که بر اساس درجه باور کارشناس حوزه به دست آمده اند. برای این منظور، دو روش را ارایه می دهیم. در روش اول، با معرفی مفهوم قید شانس، به یک مدل برنامه ریزی خطی عدد صحیح با ضرایب قطعی می رسیم. روش دوم نیز بر پایه مفهوم امید غیرقطعی استوار است. در آخر نیز یک مثال عددی برای این دو روش ارایه شده است.

    کلید واژگان: مجموعه پایدار، نظریه عدم قطعیت، برنامه ریزی عدد صحیح
    Mehdi Djahangiri

    The inherent characteristics of real-world data is uncertainty. If data is generated in valid experiments or collected standard, probability theory or fuzzy theory is a powerful tool for analysis it in the uncertainty conditions. But data is not always reliable; especially when it is not possible to perform multiple tests or reliable data collection. In this context, referring to the beliefs of experts in the field in question is an alternative approach and uncertainty theory is a tool by which the beliefs of experts can be mathematically incorporated into the problem-solving structure. A stable set has a wide range of applications in many fields, while in most cases its problems are without reliable data. In this paper, we investigate the finding of stable weighted sets with uncertain weights. These weights have an uncertain distribution based on the degree of belief of the field expert. For this purpose, we offer two methods. In the first method, by introducing the concept of chance constraint, we come to an integer linear programming model with definite coefficients. The second method is based on the concept of uncertain expected value. Finally, a numerical example for these two methods is presented.

    Keywords: stable set, uncertainty theory, integer programming
  • Juan Montoya *, Laura Cadavid
    We exhibit a polynomial time algorithm that computes the Clar number of any nanotube. This algorithm can be easily extended to one that computes the Clar number of fullerene whose pentagon-clusters are all of even size.It is known that computing the Clar number of planar graphs is NP-hard. It is not known if computing the Clar number of fullerenes is a tractable problem. We show that the latter problem can be suitably approximated in polynomial time, and we also discuss the existence of fpt-algorithms for this important problem of Cheminformatics.
    Keywords: Fullerene, Clar Number, Benzonoids, Integer Programming
  • Mehdi Djahangiri

    The inherent feature of real-world data is uncertainty. If data is generated in valid experiments or standard collections, probability theory or fuzzy theory is a powerful tool for analyzing them. But data is not always reliable, especially when it is not possible to perform a reliable test or data collection multiple times. In this situations, referring to the beliefs of experts in the field in question is an alternative approach and uncertainty theory is a tool by which the beliefs of experts can be mathematically incorporated into the problem-solving structure. In this paper, we investigate the finding minimum weighted maximal matching with uncertain weights. For this purpose, we offer two methods. In the first method, by introducing the concept of chance constraint, we obtain model with definite coefficients. The second method is based on the concept of uncertain expected value. Finally, a numerical example for these two methods is presented.

    Keywords: Uncertainty theory, Graph, Maximal matching, Integer programming
  • Mohsen Rezapour *

    We consider a family of problems that combine network design and facility location. Such problems arise in many practical applications in different fields such as telecommunications, transportation networks, logistic, and energy supply networks. In facility location problems, we want to decide which facilities to open and how to assign clients to the open facilities so as to minimize the sum of the facility opening costs and client connection costs. These problems typically do not involve decisions concerning the routing of the clients’ demands to the open facilities; once we decided on the set of open facilities, each client is served by the closest open facility. In network design problems, on the other hand, we generally want to design and dimension a minimum-cost routing network providing sufficient capacities to route all clients’ demands to their destinations. These problems involve deciding on the routing of each client’s demand. But, in contrast to facility location problems, demands’ destinations are predetermined. In many modern day applications, however, all these decisions are interdependent and affect each other. Hence, they should be taken simultaneously. The aim of this work is to survey models, algorithmic approaches and methodologies concerning such combined network design facility location problems.

    Keywords: network design, facility location, Approximation algorithm, Linear, Integer Programming
  • هادی بصیرزاده*، محمد یاراحمدی
    در این مقاله، چندضلعی های با اضلاع صحیح معرفی می شوند که در رابطه ای مشابه رابطه فیثاغورس صدق می کنند. نشان داده می شود که این رابطه شبه فیثاغورس برای تمام n-ضلعی هایی که به این صورت ساخته شده اند، صدق می کند. هم چنین، ثابت می شود که زاویه مرکزی چندضلعی های مذکور از مقداری ثابت، بیش تر نیست و بنابراین این چندضلعی ها همواره محدب اند. به علاوه، یک مدل برنامه ریزی غیرخطی با اعداد صحیح ارایه می شود که این مدل می تواند اضلاع صحیح این چندضلعی ها را به دست دهد.
    کلید واژگان: چندضلعی محدب، برنامه ریزی با اعداد صحیح، بهینه سازی
    Hadi Basirzadeh *, Mohamad Yar Ahmadi
    In this work, polygons of the integer sides are introduced. Moreover, by considering some Pythagorean-like relationships on these polygons, we prove that for all n-polygons of the aforementioned relationship, Pythagorean quasi-relations are satisfied. Furthermore, it is proved that the central angle of these polygons is not more than a constant value, so these polygons are always convex. Moreover, a nonlinear integer programming model for obtaining the integer sides of these polygons is presented.
    Keywords: convex polygons, integer programming, Optimization
  • Seyed Mohammadtaghi Azimi, Hu Chun, Chen Zhihong, Amirhossein Nafei *

    Linear Programming as a practical technique for solving optimization problems with linear objective functions and linear constraint plays an essential role in mathematical programming. Most of the real-world problems are included in inconsistent and astute uncertainty. That's why the optimal solution can't be found easily. The Neutrosophic theory, as an extension of fuzzy set theory, is a powerful instrument to handle inconsistent, indeterminate, and incomplete information. This paper presents an applied approach for solving Interval Neutrosophic Integer Programming problems. By using the proposed approach, we can handle both incomplete and indeterminate data. In this respect, using a ranking function, we present a technique to convert the Interval Neutrosophic Integer Programming problem into a crisp model and then solve it by standard methods.

    Keywords: Neutrosophic, linear programming, Integer programming, Interval neutrosophic number
  • Farzaneh Ferdowsi, H. Reza Maleki*, S. Rivaz

    Using fossil fuels in transportation sector has caused many environmental and economic problems. Therefore, the use of alternative fuel vehicles is necessary. Since such vehicles have limited fuel tank capacities, hence, frequent refueling is required. Regarding the possibility of the existence of different fuel costs in various refueling stations, the selection of suitable stations with the purpose of minimizing total cost of refueling is important. Moreover, minimizing the number of refuelings could be considered as another important criterion in refueling operations of a given trip. In this paper an integer bi-objective model is proposed to select suitable refueling stations considering two criteria of minimizing the total cost of refueling and minimizing the number of refuelings. To solve the proposed model, a new algorithm is suggested and its performance is compared with the weighted sum method of multi-objective optimization literature. The results show the superiority of the proposed solution approach.

    Keywords: Refueling station, Multi-objective programming, Integer programming, Labeling algorithm
  • E.S. Alavi, R. Ghanbari
    Assigning available resources to fire stations is a main task of fire depart ment’s administrator in a city. The importance of this problem increases when the number of available resources are inadequate. In this situation, the goal is to assign the limited available resources to fire stations such that the associated penalties of the shortages are minimized. Here, we first give a mathematical approach to consider some penalties for the shortage. Next, we give an integer program to minimize the sum of associated penalties. The proposed model can be used in many other problems arisen from health services, emergency management, and so on. We also propose a heuristic to efficiently solve the problem in a reasonable time. Our proposed heuristic has two phases. In the first phase, using a greedy approach, our proposed heuristic constructs a proper feasible solution. Next, in the second phase, we propose a local search to improve the quality of the solution constructed in the first phase. To show the efficiency of our proposed heuristic, we com pare our proposed heuristic with CPLEX based on the running time and the quality of obtained solutions on two groups of problems (real-word problems and randomly generated problems). The numerical results show that on the 80% of benchmark problems, the obtained solution is the same as CPLEX’s solutions. Also, the running time of our proposed algorithm is almost 10 times better than CPLEX’s running time, in average.
    Keywords: Resource assignment problem, Fire stations, Shortage, Integer programming, Heuristics
  • عباس مهربانی*، حبیبه صادقی
    برنامه ریزی دو سطحی، مدلی برای مسایل بهینه سازی سلسله مراتبی است که دو تصمیم گیرنده با توابع هدف، متغیر ها و قید های متفاوتی وجود دارد. آلوز و همکارانش در [1]، روشی برای محاسبه مرز کارای مساله دو سطحی خطی با دو تابع هدف در سطح بالا و یک تابع هدف در سطح پایین ارائه دادند. در این مقاله ما روش آنها را برای حالتی که بیش از دو تابع هدف در هر دو سطح وجود دارد، تعمیم داده و با بهره گیری از تغییر متغیر مناسب، روش جدیدی برای محاسبه مرز کارای مساله دو سطحی خطی با توابع هدف کسری در سطح بالا ارائه می دهیم. نهایتا کارآیی روش های پیشنهادی را با حل چند مثال عددی و مقایسه نتایج آنها با دیگر روش ها نشان می دهیم.
    کلید واژگان: برنامه ریزی دو سطحی، برنامه ریزی چند هدفه، مرز کارا، برنامه ریزی صحیح، آمیخته، برنامه ریزی کسری
    Abbas Mehrabani*, Habibe Sadeghi
    Bilevel programming is the model for hierarchical optimization problems in which there are two decision makers that have different objective functions, variables and constraints. Alves et al in[1], proposed a method for computing the Pareto frontier of bilevel linear problem with biobjective at the upper level and a single objective function at the lower level. In this paper, we extend their method for the situation in which there exists more than two objective function at both levels, and then by using a suitable exchange variable, we proposed a new method for computing the Pareto frontier of bilevel linear problem with fractional multi-objective at the upper level. Finally we will show the efficiency of the propsed approaches by solving a few numerical examples and comparing the results with other methods.
    Keywords: Bilevel programming, Multi objective programming, Pareto frontier, mixed, integer programming, Fractional programming
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال