به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

kernel function

در نشریات گروه ریاضی
تکرار جستجوی کلیدواژه kernel function در نشریات گروه علوم پایه
  • Gholamreza Hesamian, Mohamadghasem Akbari, Mehdi Shams*

    Multivariate regression is an approach for modeling the linear relationship between several variables. This paper proposed a ridge methodology with a kernel-based weighted absolute error target with exact predictors and fuzzy responses. Some standard goodness-of-fit criteria were also used to examine the performance of the proposed method. The effectiveness of the proposed method was then illustrated through two numerical examples including a simulation study. The effectiveness and advantages of the proposed fuzzy multiple linear regression model were also examined and compared with some well-established methods through some common goodness-of-fit criteria. The numerical results indicated that our prediction/estimation gives more accurate results in cases where multicollinearity and/or outliers occur in the data set.

    Keywords: Goodness-Of-Fit Measure, Robust, Multicollinearity, Kernel Function, Outlier
  • Youssra Bouhenache *, Wided Chikouche, Imene Touil, Sajad Fathi-Hafshejani
    In this paper, we present primal-dual interior-point methods (IPMs) for convex quadratic programming (CQP) based on a new twice parameterized kernel function (KF) with a hyperbolic barrier term.  To our knowledge, this is the first KF with a twice parameterized hyperbolic barrier term. By using some conditions and simple analysis, we derive the currently best-known iteration bounds for large- and small-update methods, namely, $\textbf{O}\big(\sqrt{n}\log n\log\frac{n}{\epsilon}\big)$ and $\textbf{O}\big(\sqrt{n}\log\frac{n}{\epsilon}\big)$, respectively, with  special choices of the parameters. Finally, some numerical results regarding the practical performance of the new proposed KF are reported.
    Keywords: Convex Quadratic Programming, Kernel Function, Interior-Point Methods, Large-, Small-Update Methods
  • محسن عارفی*، سید محمود طاهری
    چندین روش به منظور برآورد تابع چگالی احتمال وجود دارد. از سوی دیگر، در نظریه مجموعه های فازی یکی از روش های ساختن تابع عضویت بر پایه ی مجموعه داده، روش مبتنی بر تابع چگالی احتمال است. با توجه به روش های متداول در برآورد تابع چگالی، این مسئله می تواند به محاسبه انواع تابع عضویت بر پایه یک مجموعه داده منجر شود. در این مقاله، برخی از این روش ها بیان و با مثال عددی تشریح می شوند.
    کلید واژگان: تابع توزیع تجربی، تابع چگالی احتمال، تابع عضویت، تابع هسته
  • Derbal Louiza, Kebbiche Zakia, Bouafia Mousaab *
    The purpose of this paper is to obtain new complexity results for solving the semidefinite optimization (SDO) problem. We define a new proximity function for the SDO by a new kernel function with an efficient logarithmic barrier term. Furthermore, we formulate an algorithm for the large and small-update primal-dual interior-point method (IPM) for the SDO. It is shown that the best result of iteration bounds for large-update methods and small-update methods can be achieved, namely $\mathcal{O}\left(qn^{\frac{q+1}{2q}}\log \frac{n}{\epsilon }\right) $\ for large-update and $\mathcal{O}(q^{2}\sqrt{n}\log \frac{n}{\epsilon })$ for small-update methods, where $q>1.$ The analysis in this paper is new and different from the one using for LO. Several new tools and techniques are derived in this paper. Furthermore, numerical tests to investigate the behavior of the algorithm so as to be compared with other approaches.
    Keywords: Kernel function, Proximity function, Semidefinite optimization, Complexity analysis, Primal-dual interior-point methods
  • مدلهای سری زمانی پارامتری معمولا شامل شناسایی مدل، برآورد پارامترها، بررسی تشخیصی مدل و پی شبینی هستند. با این حال، در مقایسه با روش های پارامتری، مدل های سری زمانی ناپارامتر ی اغلب یک رویکرد بسیار انعطاف پذیر برای نشان دادن ویژگیهای مشاهدات سریهای زمانی ارایه می- دهند. این مقاله یک روش ناپارامتری فازی جدید در مدل های سر ی زمانی با مشاهدات فازی پیشنهاد کرده است. برای این منظور، یک روش هموارسازی مبتنی بر برازش کرنل پیشرو فازی برای برآورد توابع هموارساز فازی مربو ط به هر مشاهده معرفی شده است. یک الگوریتم بهینه سازی ساده نیز برای محاسبه پهنای باند و مرتبه اتورگرسیو بهینه پیشنهاد شد. چندین معیار نیکویی برازش نیز برای مقایسه عملکرد روش سری زمانی فازی پیشنهادی در مقایسه با سایر مدلهای سری زمانی فازی بر اساس داده- های فازی، تعمیم داده شده است. عالوه براین، کارایی روش پیشنهادی با استفاده از دو مثال عددی از جمله یک مطالعه شبی هسازی نشان داده شده است. نتایج نشان میدهد که مدل پیشنهادی هم از نظر معیارهای طرح پراکندگی و هم معیارهای نیکویی برازش نسبت به مدلهای قبلی کارایی بهتری دارد.

    G. Hesamian *, F. Torkian, M. Yarmohammadi

    Parametric time series models   typically consists of model identification, parameter estimation, model diagnostic checking, and forecasting. However compared with parametric methods, nonparametric time series models often provide  a very flexible approach to bring out the features of the observed time series. This paper suggested a novel fuzzy nonparametric method in time series models with fuzzy observations. For this purpose, a fuzzy forward fit kernel-based smoothing method was introduced to estimate fuzzy smooth functions corresponding to each observation. A simple optimization algorithm was also suggested to evaluate optimal bandwidths and autoregressive order. Several common goodness-of-fit criteria were also extended to compare the performance of the proposed fuzzy time series method compared to other fuzzy time series model based on fuzzy data. Furthermore, the effectiveness of the proposed method was illustrated through two numerical examples including a simulation study. The results indicate that the proposed model performs better than the previous ones in terms of both scatter plot criteria and goodness-of-fit evaluations.

    Keywords: Goodness-of-fit criteria, additive, Kernel function, fuzzy response, Fuzzy time series, fuzzy smooth function
  • A. H. Khammar *, M. Arefi, M. G. Akbari

    In this paper, a new approach is presented to fit arobust fuzzy regression model based on some fuzzy quantities. Inthis approach, we first introduce a new distance between two fuzzynumbers using the kernel function, and then, based on the leastsquares method, the parameters of fuzzy regression model isestimated. The proposed approach has a suitable performance topresent the robust fuzzy model in the presence of different typesof outliers. Using some simulated data sets and some real datasets, the application of the proposed approach in modeling somecharacteristics with outliers, is studied.

    Keywords: distance, Kernel function, Least squares method, Outliers, Robust fuzzy regression
  • Behrouz Kheirfam*, Masoumeh Haghighi
    An infeasible interior-point algorithm for solving the $P_*$-matrix linear complementarity problem based on a kernel function with trigonometric barrier term is analyzed. Each (main) iteration of the algorithm consists of a feasibility step and several centrality steps, whose feasibility step is induced by a trigonometric kernel function. The complexity result coincides with the best result for infeasible interior-point methods for $P_*$-matrix linear complementarity problem.
    Keywords: Linear complementarity problem, Full-Newton step, Infeasible interiorpoint method, Kernel function, Polynomial complexity
  • Sajad Fathi-Hafshejani, Hossein Mansouri, Mohammad Reza Peyghami
    In this paper, an interior-point algorithm for P∗(κ)-Linear Complementarity Problem (LCP) based on a new parametric trigonometric kernel function is proposed. By applying strictly feasible starting point condition and using some simple analysis tools, we prove that our algorithm has O((1κ)nlog⁡nlog⁡nϵ) iteration bound for large-update methods, which coincides with the best known complexity bound. Moreover, numerical results confirm that our new proposed kernel function is doing well in practice in comparison with some existing kernel functions in the literature.
    Keywords: kernel function, linear complementarity problem, primal-dual interior point methods, large-update methods
  • M. R. Peyghami, S. Fathi Hafshejani
    In this paper, we consider convex quadratic semidefinite optimization problems and provide a primal-dual Interior Point Method (IPM) based on a new kernel function with a trigonometric barrier term. Iteration complexity of the algorithm is analyzed using some easy to check and mild conditions. Although our proposed kernel function is neither a Self-Regular (SR) function nor logarithmic barrier function, the primal-dual IPMs based on this kernel function enjoy the worst case iteration bound $Oleft(sqrt{n}log nlog frac{n}{epsilon}right)$ for the large-update methods with the special choice of its parameters. This bound coincides to the so far best known complexity results obtained from SR kernel functions for linear and semidefinite optimization problems. Finally some numerical issues regarding the practical performance of the new proposed kernel function is reported.
    Keywords: Convex quadratic semidefinite optimization problem, Primal-dual interior-point methods, Kernel function, Iteration complexity
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال