به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

maximum likelihood estimator

در نشریات گروه ریاضی
تکرار جستجوی کلیدواژه maximum likelihood estimator در نشریات گروه علوم پایه
تکرار جستجوی کلیدواژه maximum likelihood estimator در مقالات مجلات علمی
  • Ehsan Golzade Gervi *
    In some real-life situations, we will face restrictions of time and sample size which cause a researcher to not have access to all of the data. Therefore, it is valuable to study the estimation of parameters based on information of available data. In such situations, using appropriate sampling schemes, to more efficient estimators are important. The aim of the present paper is to study the Bayes estimators of parameters of the Pareto type-I model under different loss functions and compare among them as well as with the classical estimator named maximum likelihood estimator based on upper record ranked set sampling scheme. Here the informative Gamma prior is used as the conjugate prior distribution for finding the Bayes estimator. We also used symmetric loss functions such as squared error loss function and asymmetric loss functions such as linear-exponential loss function. We present the analysis of a Monte Carlo simulation to compare the performance of the estimators with respect to their risks (average loss over sample space) based on upper record ranked set sampling. Finally, one real data set is analyzed to illustrate the performance of the proposed estimators.
    Keywords: Pareto Type-I Model, Bayesian Estimator, Upper Record Ranked Set Sampling, Loss Function, Maximum Likelihood Estimator
  • M. O. Mohamed, N. A. Hassan, Nahla Abdelrahman

    A three-parameter discrete analogue of the Alpha-power Weibull distribution (DAPW) is provided in this study. It has established some of its basic distributional and statistical properties. The probability mass function's form, moments, skewness, kurtosis, probability generating function, characteristic function, stress-strength reliability, and order statistics are all examples of this. The unknown parameters are estimated using the maximum likelihood and moments approaches. The bias and mean square error of the maximum likelihood are demonstrated via a simulated exercise. Two datasets are used to demonstrate the model's adaptability.

    Keywords: Characterization, Maximum likelihood estimator, Survival functio, n Quantile, Reliability, Failure rate, Second rate of failure
  • A. A. Eman, Abbas N. Salman

    The maximum likelihood estimator employs in this paper to shrinkage estimation procedure for an estimate the system reliability $R$ in the stress-strength model, when the stress and strength are independent and non-identically random variables and they follows the odd Fr`{e}chet inverse exponential distribution (OFIED). Comparisons among the proposed estimators were presented depend on simulation established on mean squared error (MSE) criteria.

    Keywords: odd Fr`echet inverse exponential distribution, Reliability Stress–Strength model, Maximum likelihood estimator, Shrinkage estimator, Single Stage Shrunken estimator, meansquared error
  • Ezzatallah Baloui Jamkhaneh, Mortaza Ghasemi Cherati*, Einolah Deiri

    Different estimation procedures for the probability density and cumulative distribution functions
    of the generalized inverted Weibull distribution are discussed. For this purpose, the parametric and non-parametric estimation approaches as maximum likelihood, uniformly minimum variance unbiased, percentile, least squares and weighted least squares estimators are considered and compared. The expectations and mean square error of the maximum likelihood and uniformly minimum variance unbiased estimation are provided in the closed-form whereas, for non-parametric estimation methods (percentile, least squares and weighted least squares), the expectations and mean square error are computed via the simulation data. The Monte Carlo simulations are provided to assess the performances of the proposed estimation methods. Finally, the analysis of the real data set has been presented for illustrative purposes.

    Keywords: Generalized inverted Weibull distribution, Maximum likelihood estimator, Uniformlyminimum variance unbiased estimator, Percentile estimator, Least squares estimator, Weightedleast squares estimator
  • مریم شرفی*، فریده توانگر، شهره انعامی، حسین نادب

    توزیع کاپا یکی از توزیع های چوله مثبت است که به منظور تجزیه و تحلیل داده های بارندگی، سرعت باد و جریان سیلاب استفاده می شود. در این مقاله ابتدا به بررسی توزیع کاپا سه پارامتری معرفی شده به وسیله پارک و همکاران [1]  پرداخته و سپس چهار روش برآوردیابی شامل روش گشتاوری، گشتاورهای خطی بیشینه درست نمایی و بیشینه حاصل ضرب فاصله ها را برای برآوردیابی پارامترهای این توزیع ارایه داده و با استفاده از یک بررسی شبیه سازی، به مقایسه عملکرد آنها پرداخته و در پایان، این روش ها، برای داده های مربوط به مجموع بارش ماهانه ایستگاه آبعلی استان تهران به کار گرفته می شود.

    کلید واژگان: توزیع کاپا سه پارامتری، برآوردگر بیشینه درست نمایی، برآوردگر گشتاورهای خطی، برآوردگر بیشینه حاصل ضرب فاصله ها
    Maryam Sharafi*, Farideh Tavangar, Shohre Enami
    Introduction

    The kappa distribution was first introduced by Mielke (1973) and Mielke and Johnson (1973) for describing and analyzing precipitation data. This distribution is positively skewed and is widely applied when studying precipitation, wind speed and the stream flow data in hydrology. The kappa distribution has some advantages over gamma and log-normal distributions in fitting historical rainfall. Data It is because, unlike the latter two distributions, it has closed forms for the cumulative distribution function and quantile function. Due to this important feature, the kappa distribution attracts the attention of several researchers. Park et al. (2009) introduced the three-parameter kappa distribution and provided a description of the mathematical properties of the distribution and estimated the parameters by three methods. Also, they illustrated its applicability for rainfall data from Seoul, Korea. In this paper, we study the distribution and the estimation methods for the parameters considered by Park et al. (2009), and propose a new estimation method. Then, we will compare these estimation methods using a Monte Calro simulation study and a real dataset.

    Material and methods

    In this scheme, first we consider the three-parameter kappa distribution and study some of its properties and then estimate the parameters of the distribution by four methods. These methods are method of moment (MM), L-moments (LM), maximum likelihood (ML) and maximum product of spacing method (MPS). Using a Monte Carlo simulation study and a real data set, performance of these methods are compared.

    Results and discussion

    Comparing the performance of the proposed estimation methods in terms of bias and root of mean squares error (rmse), it can be concluded that the MPS method has a better performance due to its lower bias and rmse. The Kolmogorov-Smirnov test is applied for goodness-of-fit test in the three-parameter kappa distribution to the whole monthly rainfall data of Abali station in Tehran province. The results demonstrate that the MPSE method leads to better results than other mentioned methods.

    Conclusion

    The following conclusions were drawn from this research.The Monte Carlo simulation shows that the maximum product spacing method, which is proposed in this paper, is the best method for estimating the parameters of the three-parameter kappa distribution.The statistics and p-value of the Kolmogorov–Smirnov test show that the three-kappa distribution with the MPS method of estimation has better fit than the other methods.

    Keywords: Three-parameter kappa distribution, Maximum likelihood estimator, L-Moments estimator, Maximum product of spacings estimator
  • عیسی محمودی*، عاطفه پورچیت ساز
    در این مقاله، توزیع جدیدی با نام توزیع نیم-نرمال تعمیم یافته معرفی می شود. این توزیع در حالت خاص شامل توزیع نیم-نرمال است. برخی از ویژگی های این توزیع از جمله تابع چگالی احتمال، تابع توزیع، تابع نرخ خطر، گشتاور مرتبه ی ام و تابع مولد گشتاور در این مقاله مورد مطالعه قرار می گیرد. همچنین نتایج دو کاربرد داده های واقعی برای این توزیع به دست آمده است که نتایج حاکی از برازش بهتر این داده ها به توزیع نیم-نرمال تعمیم یافته نسبت به توزیع نیم-نرمال است.
    کلید واژگان: برآوردگر گشتاوری، برآوردگر ماکسیمم درستنمایی، تابع قابلیت اعتماد، تابع نرخ خطر
    Eisa Mahmoudi*, Atefe Pourchitsaz
    In this article new generalization of half-normal distribution as the half generalized normal distribution is introduced.ý This distribution, contains the half-normal distribution as special case.
    We provide mathematical properties of this distribution. We also derive the pdf, cdf, -th moment, the asymmetry and kurtosis coefficients and the moment generating function. We discuss some inferential aspects related to the maximum likelihood estimation. Finally we illustrate the flexibility of this type of distribution with applications to real data sets.
    Keywords: Half-normal distribution, Hazard ratio function, Maximum likelihood estimator, Moment estimator
  • Hojatollah Zakerzadeh, Mahdieh Karimi

    In this paper, we consider the problem of estimating the scale parameter of exponential distribution after preliminary test when the record values are available. The optimal significance levels based on the minimax regret criterion and the corresponding critical values are obtained. This estimator is illustrated by a numerical example.

    Keywords: Maximum likelihood estimator, minimaxregret criterion, optimal significance levels, preliminary test estimator, record values
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال