parameter estimation
در نشریات گروه ریاضی-
Since system identification of a tumor model is a primary need for controlling tumor model system, accessing suitable and applicable identification methods is a necessary object. In this paper, firstly, for estimating controlled auto-regressive moving average (CARMA) systems, two identification methods, namely generalized projection algorithm (GPA) and two-stage GPA (2S-GPA), are introduced and presented in order to estimate unknown parameters of a specific and vital tumor model. Furthermore, effectiveness of such methods, like convergence rate and estimation error, are discussed and considered. The introduced algorithms are simulated to prove these methods effectiveness, and data derived from the simulations are depicted through tables and figures.Keywords: Generalized Projection Algorithms, Two-Stage Identification, System Identification, Parameter Estimation
-
در این مقاله از دیدگاه استنباط آماری، مدل های معادلات دیفرانسیل تصادفی مورد مطالعه قرار می گیرند. یک حالت ناهمگن از یک فرایند انتشار با ضریب کاهش سرعت وابسته به زمان و مدل های معادلات دیفرانسیل تصادفی با اثرات تصادفی بررسی می شود و یک تقریب برای معادله دیفرانسیل تصادفی غیر خطی ارائه می شود. همچنین به کمک تحلیل های سری زمانی و روش های آماری، پارامترهای مدل های معادلات دیفرانسیل تصادفی براورد می شوند. در پایان کاربرد مفصل ناوردا در مدل بندی معادلات دیفرانسیل تصادفی بیان می شود. در هر از این حالت ها تابع چگالی احتمال فرایند و توابع روند محاسبه می شوند و استنباط های آماری نظیر براورد نقطه ای، براورد فاصله ای، انتخاب بهترین مدل و تحلیل های عددی و شبیه سازی در معادلات دیفرانسیل تصادفی انجام می شوند.
کلید واژگان: فرایند وینر، معادلات دیفرانسیل تصادفی، براورد حداکثر درستنمایی، معیار اطلاع آکائیکه، براورد پارامترIn this paper, the probability density function of the process, its trend functions, the maximum likelihood estimate and the confidence interval of the parameters are calculated. This paper investigates a nonhomogeneous state of a diffusion process with a time-dependent velocity reduction coefficient. First, the process probability density function and trend functions are calculated and then, using discrete sampling, statistical inferences such as estimating the parameters by the maximum likelihood method, finding the distribution of the obtained estimators and the confidence interval of the parameters are performed. Finally, for the simulated data, the applications of this model are introduced. In this paper, from the point of view of statistical inference, stochastic differential equation models are studied. A heterogeneous case of a diffusion process with time-dependent deceleration coefficient and stochastic differential equation models with random effects are investigated and an approximation for the nonlinear stochastic differential equation is presented. Also, with the help of time series analysis and statistical methods, the parameters of stochastic differential equation models are estimated.At the end, the application of invariant copulas in the modeling of stochastic differential equations is expressed. In each of these cases, the process probability density function and trend functions are calculated, and statistical inferences such as point estimation, interval estimation, selection of the best model, and numerical analyzes and simulations are performed in stochastic differential equations.
Keywords: Wiener Process, Stochastic Differential Equations, Maximum Likelihood Estimation, Akaike Information Criterion, Parameter Estimation -
Economic and finance time series are typically asymmetric and are expected to be modeled using asymmetric nonlinear time series models. The logistic smooth transition autoregressive, LSTAR, model which is an asymmetric type of the smooth transition autoregressive, is becoming popular in modeling economic and financial time series. In this paper, we have considered the logistic smooth transition autoregressive model and have estimated unknown parameters based on the method of moment and modified maximum likelihood method. The performance of the proposed estimation methods are studied by simulation and are compared with the performance of maximum likelihood estimators. It shown that for large sample sizes, the modified maximum likelihood estimators usually have the lowest mean square error and bias. We proposed a LSTAR model to finance rate on consumer installment loans at commercial banks and conclude that the estimated LSTAR model based on the modified maximum likelihood method has the lowest value of MSE. Keywords: Asymmetric Model, LSTAR Model, Modified Maximum Likelihood, Method Of Moment, Parameter Estimation
-
In recent years, precise analysis and prediction of financial time series data have received significant attention. While advanced linear models provide suitable predictions for short and medium-term periods, market studies have indicated that stock behavior adheres to nonlinear patterns and linear models capturing only a portion of the market's stock behavior. Nonlinear exponential autoregressive models have proven highly practical in solving financial problems. This article introduces a new nonlinear model that allocates coefficients to significant variables. To achieve this, existing exponential autoregressive models are analyzed, tests are conducted to validate data integrity and identify influential factors in data trends, and an appropriate model is determined. Subsequently, a novel coefficient allocation method for optimizing the nonlinear exponential Autoregressive model is proposed. The article then proves the ergodicity of the new model and determines its order using the Akaike Information Criterion (AIC). Model parameters are estimated using the nonlinear least squares method. To demonstrate the performance of the proposed model, numerical simulations of Kayson Corporation's stocks are analyzed using existing methods and the new approach. The numerical simulation results confirm the effectiveness and prediction accuracy of the proposed method compared to existing approaches.Keywords: Financial Time Series, Nonlinear Exponential Autoregressive Model, Prediction, Parameter Estimation
-
در این مقاله، روش جدیدی برای برآورد پارامترهای فرایند ارنشتاین اولنبک استخراج شده توسط فرایندهای پواسون مرکب ارائه می شود. این فرایند ها کاربرد گسترده ای در مدلسازی و پیش بینی بازارهای مالی دارند. برآوردگرهای ارائه شده بر اساس روش گشتاورها به دست می آیند. در این کار، قضیه حد مرکزی برای برآوردگرهای پیشنهادی مورد ارزیابی قرار می گیرد. شبیه سازی های عددی نشان می دهند که روش ارائه شده در مقایسه با روش های موجود، در مواردی که پرش های فرایند پواسون مرکب نسبتا نادر هستند، عملکرد بهتری دارد. به عنوان یک رویکرد تجربی، داده های بازار فولاد مبارکه اصفهان با مدل های ارنشتاین اولنبک با نویزهای گاما، پارتو و نرمال برازش می شوند. بدین منظور ابتدا با استفاده از روش ارائه شده، پارامترها تخمین زده می شوند و نهایتا تحت این مدل های تصادفی، تلاطم بازار فولاد مبارکه اصفهان شبیه سازی می شود.
کلید واژگان: فرایند ارنشتاین اولنبک، نویز لوی، تخمین پارامتر، روش گشتاوریThis paper proposed a new method for parameters estimation of the Ornstein Uhlenbeck processes driven with the compound Poisson process. These processes have some applications in modeling and forecasting in financial markets. The proposed estimators are derived based on the method of the moment. In this work, the central limit theorem for the proposed estimators is also established. Numerical experiments are provided to show that the proposed method performs better in comparison with the existing methods, especially in cases when the jumps of the compound Poisson process are relatively rare. As an experimental approach, we fit the Mobarakeh Steel company data with Gamma, Pareto, and Normal Ornstein Uhlenbeck processes and estimate the parameters by using the proposed method. Finally, under these stochastic models, we simulate the volatility of the Mobarakeh Steel Company.
Keywords: Ornstein Uhlenbeck Process, Levy Noise, Parameter Estimation, Method Of Moments -
International Journal Of Nonlinear Analysis And Applications, Volume:14 Issue: 4, Apr 2023, PP 151 -160
To introduce a new four-parameter lifetime distribution that will be more flexible in modelling real lifetime data over the existing common lifetime distributions. The new four-parameter lifetime distribution is generated by using the odd Chen generator of distributions. In this method, the probability density function and cumulative distribution function of Fr´echet distributions are used as a base distribution for odd Chen Fr´echet distributions. The probability density function and cumulative distribution function of the Fr´echet distributions are substituted in the odd Chen generator of the distributions model to get the new and more flexible lifetime distribution for modelling real-life data. The authors reveal that the hazard rate of the odd Chen Fr´echet distributions is increasing. They also found that the odd Chen generator of distributions gives a much close fit than the Fr´echet Distribution (FD), Weibull distribution(WD), and exponential distribution (ED). In this study, a novel probability distribution is introduced. odd Chen generator of distributions is capable of modelling upside-down bathtub-shaped hazard rates. The model is appropriate to fit the asymmetrical data that are not correctly fitted by other distributions. The said distribution can be applied to different fields like insurance, earthquake data for analysis, reliability etc.
Keywords: odd Chen generator of distributions, Reliability Analysis, Moments, Parameter Estimation, Fr´echet, MLE -
محققان علوم مختلف اغلب با پدیده هایی رو به رو هستند که ماهیت تصادفی دارند. گاهی می توان از توزیع های احتمالی برای توصیف و پیش بینی این گونه پدیده ها استفاده کرد. هر توزیع دارای تعدادی پارامتر مجهول است که مقدار آنها بر اساس داده ها برآورد می شوند. در برخی مسایل، چند توزیع رقیب برای برازش به یک مجموعه داده وجود دارد. در این صورت، لازم است توزیع مناسب را بر اساس معیارهایی انتخاب کرد. این مقاله به معرفی امکانات نرم افزار آماری R برای اجرای مراحل فوق می پردازد. کاربرد روش های مطرح شده را به کمک یک مجموعه داده پزشکی نشان می دهیم.
کلید واژگان: انتخاب مدل، برآورد پارامتر، توزیع گاما، توزیع لگ نرمالResearchers in different disciplines often face phenomena of random nature. Sometimes it is possible to use probability distributions to describe and predict such phenomena. Each distribution has a number of unknown parameters, whose values are estimated from data. In some problems, there are a few competing distributions for fitting to a data set. In this setup, selecting a suitable model based on some criteria is necessary. This article introduces facilities of R statistical software in performing the above steps. Application of the discussed methods is illustrated using a medical data set.
Keywords: Gamma distribution, Lognormal distribution, Model selection, Parameter estimation -
در این مقاله روش جدیدی برای تخمین پارامترهای توزیع بر نوع 12 بسط یافته با استفاده از اصل بیشینه سازی انتروپی بر پایه ی مقادیر رکورد k به کار گرفته شده است. از شبیه سازی مونت کارلو برای ارزیابی عملکرد این روش و مقایسه آن با روش های شناخته شده دیگر استفاده شده است. نتایج شیبیه سازی نشان دادند که روش اصل بیشینه سازی انتروپی عملکرد بهتری داشته است.کلید واژگان: اصل بیشینه راستنمایی، برآورد پارامتر، شبیه سازی مونت کارلو، توزیع بر نوع 12 بسط یافته، مقادیر رکورد kIn this paper a new method of parameter estimation was employed for extended Burr XII parameters using the principle of maximum entropy (POME) based on k-record values. The Monte Carlo simulation was applied to assess the performance of this method and compare it with some other well-known methods. The simulated results showed that POME performs better than the other methods.Keywords: POME, Parameter Estimation, Monte Carlo simulation, Extended Burr XII distribution, K-Records
-
International Journal Of Nonlinear Analysis And Applications, Volume:12 Issue: 1, Winter-Spring 2021, PP 433 -444
The main focus of this paper is to examine the effects of Gaussian white noise and Gaussian colored noise perturbations on the voltage of RC and RLC electrical circuits. For this purpose, the input voltage is assumed to be corrupted by the white noise and the charge is observed at discrete time points. The deterministic models will be transferred to stochastic differential equations and these models will be solved analytically using Ito's lemma. Random colored noise excitations, more close to real environmental excitations, so Gaussian colored noise is considered in these electrical circuits. Scince there is not always a closed form analytical solution for stochastic differential equations, then these models will be solved numerically based on the Euler- maruyama scheme. The parameter estimation for these stochastic models is investigated using the least square estimator when the parameters are missing data that it is a concern in electrical engeineering. Finally, some numerical simulations via Matlab programming are carried out in order to show the efficiency and accuracy of the present work.
Keywords: Stochastic differential equation, Gaussian white noise, Gaussian colored noise, Simulation, Electrical circuits, Parameter estimation -
International Journal Of Nonlinear Analysis And Applications, Volume:12 Issue: 1, Winter-Spring 2021, PP 189 -201
Parameter recovery of dynamical systems has attracted much attention in recent years. The proposed methods for this purpose can not be used in real-time applications. Besides, little works have been done on the parameter recovery of the fractional dynamics. Therefore, in this paper, a convolutional neural network is proposed for parameter recovery of the fractional dynamics. The presented network can also estimate the uncertainty of the parameter estimation and has perfect robustness for real-time applications.
Keywords: Convolutional neural network, Parameter estimation, Fractional Dynamics, Datadriven discovery -
In this study the main endeavor is to model dependence structure between crude oil prices of West Texas Intermediate (WTI) and Brent - Europe. The main activity is on concentrating copula technique which is powerful technique in modeling dependence structures. Beside several well known Archimedean copulas, three new Archimedean families are used which have recently presented to the literature. Moreover, convex combination of these copulas also are investigated on modeling of the mentioned dependence structure. Modeling process is relied on 318 data which are average of the monthly prices from Jun-1992 to Oct-2018.Keywords: Akaike information criterion (AIC), Copulas, Goodness of fit test (GOF), Linear convex combination, Parameter estimation
-
In this paper, we investigate some inferential properties of the upper record Lomax distribution. Also, we will estimate the upper record of the Lomax distribution parameters using methods, Moment (MME), Maximum Likelihood (MLE), Kullback-Leibler Divergence of the Survival function (DLS) and Baysian. Finally, we will compare these methods using the Monte Carlo simulation.Keywords: Lomax distribution, Upper record, Entropy, Parameter estimation, Simulation
-
International Journal of Mathematical Modelling & Computations, Volume:9 Issue: 3, Summer 2019, PP 201 -212In this paper, a new five-parameter lifetime and reliability distribution named “the exponentiated Uniform-Pareto distribution (EU-PD),” has been suggested that it has a bathtub-shaped and inverse bathtub-shape for modeling lifetime data. This distribution has applications in economics, actuarial modelling, reliability modeling, lifetime and biological sciences. Firstly, the mathematical and statistical characteristics of the proposed distribution are presented, then the applications of the new distribution are studied using the real data set. Its first moment about origin and moments about mean have been obtained and expressions for skewness, kurtosis have been given. Various mathematical and statistical properties of the proposed distribution have been discussed. Estimation of its parameter has been discussed using the method of maximum likelihood. A simulation study is given. Finally, two applications of the new distribution have been discussed with two real income and lifetime data setsThe results also confirmed the suitability of the presented models for real data collection.Keywords: Uniform-Pareto distribution, Exponentiated Uniform-Pareto distribution, Moments, lifetime data, Parameter Estimation, Goodness of fit
-
In this paper, a new two-parameter lifetime distribution called ``the exponentiated Shanker distribution" is suggested. The new distribution has an increasing, decreasing and bathtub-shaped hazard rate function (hrf) for modeling lifetime data. Various mathematical and statistical properties of the proposed distribution including its hrf, complete and incomplete moments, skewness and kurtosis, mean deviations, Bonferroni and Lorenz curves are discussed. Estimation of its parameters is also discussed using the method of maximum likelihood estimation and a simulation study is given. Finally, two applications of the new distribution are presented using two real data sets. The results also confirmed the suitability of the proposed model for the real data sets.Keywords: Exponentiated Shanker distribution, goodness of fit, lifetime data, mathematical, statistical characteristics, parameter estimation
-
هدف اصلی این مقاله ارایه یک آنالیز کمی برای بررسی رفتار قیمت نفت اوپک می باشد. بدست آوردن بهترین معادله ی ریاضی برای توصیف قیمت نفت و نوسانات آن از اهمیت به سزایی برخوردار است. معادلات دیفرانسیل تصادفی جز بهترین مدل ها برای تعیین قیمت نفت می باشند، چرا که به علت داشتن عامل تصادفی می توانند تاثیر عوامل مختلف اقتصادی و سیاسی را در مدل لحاظ نمایند. بدین منظور ابتدا کارایی مدل های مختلف معادلات دیفرانسیل تصادفی را جهت شبیه سازی قیمت نفت اوپک مورد بررسی قرار داده، سپس با در دست داشتن قیمت های روزانه نفت اوپک در سال های 2003 الی 2016 و با توجه به نوسانات زیاد قیمت نفت در این بازه زمانی، به علت بحران های سیاسی و اقتصادی، داده ها را به چهار قسمت تقسیم کرده و برآورد پارامترهای مجهول معادلات را با استفاده از روش برآورد گشتاوری تعمیم یافته، در این بازه های زمانی انجام می دهیم. نهایتا بهترین مدل را با توجه به نمودار اصلی قیمت و مقایسه نتایج شبیه سازی عددی با استفاده از نرم افزار متلب به دست می آوریم.کلید واژگان: برآورد پارامتر، حرکت براونی، شبیه سازی عددی، معادلات دیفرانسیل تصادفی، قیمت نفت اوپکThe main purpose of this paper is to provide a quantitative analysis to investigate the behavior of the OPEC oil price. Obtaining the best mathematical equation to describe the price and volatility of oil has a great importance. Stochastic differential equations are one of the best models to determine the oil price, because they include the random factor which can apply the effect of different economical and political elements .In order to earn the best model, at first we study the effectiveness of different stochastic differential equations models and then using the daily OPEC oil price in years 2003 to 2016, according to the high oscillation of oil price due to the various economical and political creases, we divide the data to four parts and estimate the unknown parameters of the equations in these time periods using the General Method of Moment. At last, the best model can be defined by attention to the main price chart and numerical simulations.Keywords: Parameter Estimation, Brownian Motion, Numerical Simulation, Stochastic Differential Equations, OPEC Oil Price
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.