به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

triangular functions

در نشریات گروه ریاضی
تکرار جستجوی کلیدواژه triangular functions در نشریات گروه علوم پایه
تکرار جستجوی کلیدواژه triangular functions در مقالات مجلات علمی
  • Omid Baghani *, Hadis Azin
    Error estimate and rate of convergence are two important topics in the field of numerical analysis. A convenient normed space corresponding to the problem under regard can have better upper bounds. This paper introduces a weighted normed space $L_{p,\omega}$ which from the measure theory point of view, is a special case of $L^{p}$ space. This space is a modification of $L_{p,\alpha}$ space, which is introduced before in \cite{Baghani}. Next, by using $L_{p,\alpha}$-norm, we compute a two-variable upper bound of the triangular function.
    Keywords: $L, {p, alpha}$ space, $L, {p, omega}$ space, Error estimation, Triangular functions
  • E. Zeynal, E. Babolian, T. Damercheli*

    In this paper, we propose direct methods to solve linear delay differential equations (DDEs) based on vector forms of Block-Pulse Functions (BPFs) and Triangular Functions (TFs). Operational matrix of integration of BPFs and TFs are applied to transform LDDE to a linear system of algebraic equations. Further, some numerical examples are presented to indicate the reliability and accuracy of these methods. Convergence analysis of the present method has been discussed.

    Keywords: Linear delay differential equations, Block-Pulse Functions, Triangular Functions, Direct method
  • مهناز عسگری*

    در این مقاله یک روش عددی بر مبنای ماتریس عملیاتی توسعه یافته از توابع مثلثی برای تقریب جواب معادله انتگرال دیفرانسیل ولترا از مرتبه کسری، ارایه شده است. مشتق کسری به کار رفته در این مسئله در مفهوم کاپوتو است. استفاده از ویژگی های توابع مثلثی و ماتریس عملیاتی توسعه یافته برای انتگرال گیری کسری، معادله انتگرال- دیفرانسیل را به دستگاه معادلات جبری تبدیل می کند. به کارگیری روش ذکرشده برای حل معادلات انتگرال- دیفرانسیل کسری، باعث سادگی در محاسبات می شود. به منطور نشان دادن کارایی و دقت روش از مثال های عددی استفاده شده است.

    کلید واژگان: ماتریس عملیاتی توسعه یافته، توابع مثلثی، مدل رشد جمعیت از مرتبه کسری، معادله انتگرال- دیفرانسیل کسری
    Mahnaz Asgari*

    In this paper, we apply the extended triangular operational matrices of fractional order to solve the fractional voltrra model for population growth of a species in a closed system. The fractional derivative is considered in the Caputo sense. This technique is based on generalized operational matrix of triangular functions. The introduced method reduces the proposed problem for solving a system of algebraic equations. Illustrative examples are included to demonstrate the validity and the applicability of the proposed method../files/site1/files/61/9.pdf

    Keywords: Generalized Operational Matrix, Fractional Integro-differential Equation, Population growth, Triangular Functions
  • S. Hatamzadeh, Varmazyar *, Z. Masouri
    A numerical method for solving linear integral equations of the second kind is formulated. Based on a special representation of vector forms of triangular functions and the related operational matrix of integration, the integral equation reduces to a linear system of algebraic equations. Generation of this system needs no integration, so all calculations can easily be implemented. Numerical results for some examples show that the method has a good accuracy.
    Keywords: Integral equations of the second kind, Direct method, Vector forms, Triangular functions, Approximate solution
  • S. Hatamzadeh-Varmazyar *, Z. Masouri
    Referring to one of the recent works of the authors, presented in~\cite{differentialbpf}, for numerical solution of linear differential equations, an alternative scheme is proposed in this article to considerably improve the accuracy and efficiency. For this purpose, triangular functions as a set of orthogonal functions are used. By using a special representation of the vector forms of triangular functions and the related operational matrix of integration, solving the differential equation reduces to solve a linear system of algebraic equations. The formulation of the method is quite general, such that any arbitrary linear differential equation may be solved by it. Moreover, the algorithm does not include any integration and, instead, uses just sampling of functions, that results in a lower computational complexity. Also, the formulation of this approach needs no modification when a singularity occurs in the coefficients of differential equation. Some problems are numerically solved by the proposed method to illustrate that it is much more accurate and applicable than the prior method in~\cite{differentialbpf}.
    Keywords: Linear differential equation, Numerical algorithm, Triangular functions, Vector forms, Operational matrix of integration
  • Saeed Hatamzadeh-Varmazyar *, Zahra Masouri
    This article proposes a fast and accurate expansion-iterative method for solving second kind linear Volterra integral equations. The method is based on a special representation of vector forms of triangular functions (TFs) and their operational matrix of integration. By using this approach, solving the integral equation reduces to solve a recurrence relation. The approximate solution of integral equation is iteratively produced via the recurrence relation.
    Keywords: Second kind Volterra integral equation, Triangular functions, Recurrence relation, Operational matrix, Iterative method
  • Z. Sadati *, Kh. Maleknejad
    This paper introduces a numerical method for solving the vasicek model by using a stochastic operational matrix based on the triangular functions (TFs) in combination with the collocation method. The method is stated by using conversion the vasicek model to a stochastic nonlinear system of $2m+2$ equations and $2m+2$ unknowns. Finally, the error analysis and some numerical examples are provided to demonstrate applicability and accuracy of this method.
    Keywords: Triangular functions, Stochastic operational matrix, Vasicek model, collocation method
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال