zero-divisor
در نشریات گروه ریاضی-
In this paper, we introduce the zero-divisor associate graph $\Gamma_D(R)$ over a finite commutative ring $R$. It is a simple undirected graph whose vertex set consists of all non-zero elements of $R$, and two vertices $a, b$ are adjacent if and only if there exist non-zero zero-divisors $z_1, z_2$ in $R$ such that $az_1=bz_2$. We determine the necessary and sufficient conditions for connectedness and completeness of $\Gamma_D(R)$ for a unitary commutative ring $R$. The chromatic number of $\Gamma_D(R)$ is also studied. Next, we characterize the rings $R$ for which $\Gamma_D(R)$ becomes a line graph of some graph. Finally, we give the complete list of graphs with at most 15 vertices which are realizable as $\Gamma_D(R)$, characterizing the associated ring $R$ in each case.Keywords: Zero-Divisor, Commutative Ring, Chromatic Number, Complete Graph, Line Graph
-
For an R-module M and f ∈ M∗ = Hom(M, R), let Zf(M) and Regf(M) be the sets of all zero-divisors elements and regular elements of M with re- spect to f, respectively. In this paper, we introduce the total graph of M with respect to f, denoted by T(Γf(M)), which is the graph with all the elements M as vertices, and for distinct elements m, n ∈ M, m and n are adjacent and only if m + n ∈ Zf(M). We also study the subgraphs Z(Γf(M)) and Reg(Γf(M)) with vertices Zf(M) and Regf(M), respectively.
Keywords: Total Graph, Zero-Divisor, Regular Element -
Let $\mathbb{F}_qG$ be a finite group algebra. We denote by $P(\mathbb{F}_qG)$ the probability that the product of two elements of $\mathbb{F}_qG$ be zero. In this paper, we obtain several results on this probability including a computing formula and characterizations. In particular, the computing formula for the $P(\mathbb{F}_qG)$ are established where $G$ is the cyclic group $C_n$, the Quaternion group $Q_8$, the symmetric group $S_3$ and $F_q$ is a finite field.Keywords: Unit, zero divisor, Wedderburn decomposition
-
Let $R$ be a non trivial finite commutative ring with identity and $G$ be a non trivial group. We denote by $P(RG)$ the probability that the product of two randomly chosen elements of a finite group ring $RG$ is zero. We show that $P(RG)<\frac{1}{4}$ if and only if $RG\ncong \mathbb{Z}_2C_2,\mathbb{Z}_3C_2, \mathbb{Z}_2C_3$. Furthermore, we give the upper bound and lower bound for $P(RG)$. In particular, we present the general formula for $P(RG)$, where $R$ is a finite field of characteristic $p$ and $|G|\leq 4$.Keywords: group ring, probability, unit group, zero divisor
-
Let $R$ be a commutative ring with unity not equal to zero and let $Gamma(R)$ be a zero-divisor graph realized by $R$. For a simple, undirected, connected graph $G = (V, E)$, a {it total perfect code} denoted by $C(G)$ in $G$ is a subset $C(G) subseteq V(G)$ such that $|N(v) cap C(G)| = 1$ for all $v in V(G)$, where $N(v)$ denotes the open neighbourhood of a vertex $v$ in $G$. In this paper, we study total perfect codes in graphs which are realized as zero-divisor graphs. We show a zero-divisor graph realized by a local commutative ring with unity admits a total perfect code if and only if the graph has degree one vertices. We also show that if $Gamma(R)$ is a regular graph on $|Z^*(R)|$ number of vertices, then $R$ is a reduced ring and $|Z^*(R)| equiv 0 (mod ~2)$, where $Z^*(R)$ is a set of non-zero zero-divisors of $R$. We provide a characterization for all commutative rings with unity of which the realized zero-divisor graphs admit total perfect codes. Finally, we determine the cardinality of a total perfect code in $Gamma(R)$ and discuss the significance of the study of total perfect codes in graphs realized by commutative rings with unity.
* Formulas are not displayed correctly.
Keywords: ring, zero-divisor, Zero-divisor graph, perfect code, total perfect code -
This paper introduces and studies the notion of Property (A) of a ring R or an R-module M along an ideal I of R. For instance, any module M over R satisfying the Property (A) do satisfy the Property (A) along any ideal I of R. We are also interested in ideals I which are A-module along themselves. In particular, we prove that if I is contained in the nilradical of R, then any R-module is an A-module along I and, thus, I is an A-module along itself. Also, we present an example of a ring R possessing an ideal I which is an A-module along itself while I is not an A-module. Moreover, we totally characterize rings R satisfying the Property (A) along an ideal I in both cases where I⊆\Z(R) and where I⊈\Z(R). Finally, we investigate the behavior of the Property (A) along an ideal with respect to direct products.
Keywords: Amalgamated duplication, A-ring, zero divisor -
Let R be a commutative Noetherian ring, I an ideal of R and M a non-zero R-module. In this paper we calculate the extension of annihilator of local cohomology modules H^t_I(M), t≥0, under the ring extension R⊂R[X] (resp. R⊂R[[X]]). By using this extension we will present some of the faithfulness conditions of local cohomology modules, and show that if the Lynch's conjecture, in [11], holds in R[[X]], then it will holds in R.
Keywords: Annihilator, cohomological dimension, Faithfully flat, Local cohomology, Zero-divisor -
Journal of Algebraic Structures and Their Applications, Volume:6 Issue: 2, Summer and Autumn 2019, PP 1 -7Let $A$ be a commutative ring with nonzero identity, and $1leq n<infty$ be an integer, and $R=Atimes Atimescdotstimes A$ ($n$ times). The total dot product graph of $R$ is the (undirected) graph $TD(R)$ with vertices $R^*=Rsetminus {(0,0,dots,0)}$, and two distinct vertices $x$ and $y$ are adjacent if and only if $xcdot y=0in A$ (where $xcdot y$ denote the normal dot product of $x$ and $y$). Let $Z(R)$ denote the set of all zero-divisors of $R$. Then the zero-divisor dot product graph of $R$ is the induced subgraph $ZD(R)$ of $TD(R)$ with vertices $Z(R)^*=Z(R)setminus {(0,0,dots,0)}$. It follows that if $Gamma(A)$ is not perfect, then $ZD(R)$ (and hence $TD(R)$) is not perfect.In this paper we investigate perfectness of the graphs $TD(R)$ and $ZD(R)$.Keywords: annihilator graph, Zero-divisor, Complete graph
-
فرض کنید Γ=(V,E) یک گراف باشد. هم چنین فرض کنید مجموعه مرتب W_( a)=\{w_1,...,w_k \}زیرمجموعه ای از رئوس Γ و v یک راس از آن باشد. بردار k -تایی r_2 (v∣ W_a)=(a_Γ (v,w_1), ... ,a_Γ (v,w_k)) نمایش مجاورتی v نسبت به W_a نامیده می شود که در آن a_Γ (v,w_i)=min\{2,d_Γ (v,w_i)\} و d_Γ (v,w_i) فاصله دو راس v و w_i در Γ است. W_a مجموعه کاشف مجاورتی برای Γ نامیده می شود هرگاه نمایش های مجاورتی رئوس متمایزΓ نسبت به W_a متمایز باشند. اندازه کوچکترین مجموعه کاشف مجاورتی، بعد متری مجاورتی برای Γ نامیده شده و با dim_a (Γ) نشان داده می شود. در این مقاله ابتدا ثابت می کنیم که dim_a〖(Γ_E (Z_(P^n)))=⌈(n-2)/2⌉〗. هم چنین نشان می دهیم Γ_E (Z_(p^2n))≅Γ_E (R/I)، که در آن p عددی اول، n عددی طبیعی و I ایده آلی دوجاذب از R است که تجزیه اولیه و مینیمال آن به صورت اشتراک n ایده آل اولیه است. سرانجام نتیجه می شود dim_a〖(Γ_E (R/I))=n-1〗.کلید واژگان: مجموعه کاشف، بعد متری مجاورتی، گراف رده های هم ارزی، ایده آل دوجاذب، شمارنده صفرLet Γ=(V,E) be a graph and W_(a)={w_1,…,w_k } be a subset of the vertices of Γ and v be a vertex of it. The k-vector r_2 (v∣ W_a)=(a_Γ (v,w_1),… ,a_Γ (v,w_k)) is the adjacency representation of v with respect to W in which a_Γ (v,w_i )=min{2,d_Γ (v,w_i )} and d_Γ (v,w_i ) is the distance between v and w_i in Γ. W_a is called as an adjacency resolving set for Γ if distinct vertices of Γ have distinct adjacency representations w.r.t W_a. The size of the smallest adjacency resolving set is the adjacency metric dimension of Γ and is denoted by dim_a(Γ). In this paper, we prove that dim_a(Γ_E (Z_(P^n ) ))=⌈(n-2)/2⌉. Also, we show that Γ_E (Z_(p^2n ) )≅Γ_E (R/I) in which p is a prime number, n is a natural number and I is a 2-absorbing ideal of the ring R which has a minimal primitive decomposition in the form of the intersection of n primitive ideals. Finally we conclude that dim_a〖(Γ_E (R/I))=n-1〗.Keywords: Resolving set, Adjacency metric dimension, Equivalence graph, 2-absorbing ideal, Zero divisor
-
A positive solution of the problem of the existence of nontrivial pairs of zero-divisors in group rings of free Burnside groups of sufficiently large odd periods n>10 10 n>1010 obtained previously by S. V. Ivanov and R. Mikhailov extended to all odd periods n≥665 n≥665 ý.Keywords: group ring, free Burnside group, zero divisor
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.