cuckoo search algorithm
در نشریات گروه فنی و مهندسی-
شرکت های داروسازی به دلیل الزامات نظارتی داخلی، ملی و بین المللی و همچنین محدودیت های تحمیل شده توسط دولت ها در زمینه هایی نظیر تامین مواد اولیه، توزیع، نرخ ارز، و شرایط تولید و نگهداری، با چالش های پیچیده ای در طراحی و مدیریت زنجیره تامین خود روبه رو هستند. طراحی شبکه زنجیره تامین سبز و حلقه بسته می تواند نقش کلیدی در کاهش هزینه ها، افزایش کارایی، و کاهش اثرات زیست محیطی این صنعت ایفا کند. در این مقاله، مدلی برای طراحی شبکه زنجیره تامین سبز و حلقه بسته محصولات دارویی ارائه شده است که به بررسی مکان یابی بهینه مراکز تولید، توزیع، و بازیافت می پردازد. مدل پیشنهادی عوامل درون سازمانی مانند انتخاب مواد اولیه و فناوری های سبز و عوامل بیرونی نظیر مکان یابی بهینه و بهینه سازی سیستم حمل ونقل را در نظر می گیرد. هدف این مدل، کاهش هزینه های ثابت و جاری، کاهش انتشار آلاینده های زیست محیطی، و بهبود پایداری زنجیره تامین است. برای حل مسئله، از مدل سازی ریاضی در نرم افزار GAMS و الگوریتم فرا ابتکاری جستجوی فاخته (CSA) در نرم افزار MATLAB استفاده شده است. این رویکرد با ارائه راه حل های بهینه و کارآمد برای مسائل پیچیده، نتایج قابل اتکایی به دست داده است. یافته های این پژوهش نشان می دهد که رویکرد پیشنهادی می تواند نقش مهمی در بهبود عملکرد و سبز سازی زنجیره تامین دارو داشته باشد.کلید واژگان: طراحی شبکه زنجیره تامین حلقه بسته، محصولات دارویی، بازگشت کالا، زنجیره تامین سبز، الگوریتم جستجوی فاختهPharmaceutical companies face complex challenges in designing and managing their supply chains due to regulatory requirements at the national, international, and internal levels, along with government-imposed constraints such as the sourcing of raw materials, distribution, exchange rates, and production and storage conditions. Designing green and closed-loop supply chain networks can play a crucial role in reducing costs, increasing efficiency, and minimizing the environmental impact of the industry. In this paper, a model for designing green and closed-loop supply chains for pharmaceutical products is proposed, focusing on the optimal location of production, distribution, and recycling centers. The proposed model takes into account both internal factors, such as the selection of raw materials and green technologies, and external factors like optimal site selection and transportation system optimization. The goal of this model is to minimize fixed and operational costs, reduce environmental pollutant emissions, and enhance supply chain sustainability. To solve the problem, mathematical modeling was applied using GAMS software, and the Cuckoo Search Algorithm (CSA) was implemented in MATLAB software. This approach provides optimal and efficient solutions for complex problems, yielding reliable results. The findings of this research indicate that the proposed approach can play a significant role in improving performance and greening pharmaceutical supply chains.Keywords: Closed-Loop Supply Chain Design, Pharmaceutical Products, Product Returns, Green Supply Chain, Cuckoo Search Algorithm
-
Journal of Operation and Automation in Power Engineering, Volume:13 Issue: 1, Spring 2025, PP 99 -109This paper presents a resilience-based approach for critical load restoration in distribution networks using microgrids during extreme events when the main supply is disrupted. Reconfiguration of the distribution network using graph theory is investigated, for which Dijkstra's algorithm is first used to determine the shortest paths between microgrids and critical loads, and then the feasible restoration trees are established by combining the restorable paths. A mixed-integer linear programming (MILP) model is then used to find the optimal selection of feasible restoration trees to make a restoration scheme. The service restoration is implemented with the objectives of maximizing the energy delivered to the critical loads and minimizing the number of switching operations. The limited fuel storage of the generation sources in microgrids, the operational constraints of the network and microgrids, as well as the radiality constraint of the restored sub-networks, are considered the constraints of the optimization problem. The presented method can be used for optimal restoration of critical loads including the number of switching operations which is essential for the ease of implementation of a restoration plan. The results of simulations on a 118-bus distribution network demonstrate the efficiency of the procedure.Keywords: Electric Vehicles, Optimization, Particle Swarm Optimization, CUCKOO Search Algorithm, Load Demand
-
نشریه فناوری های نوین مهندسی برق در سیستم انرژی سبز، سال سوم شماره 3 (پیاپی 11، پاییز 1403)، صص 27 -42
در این مقاله یک مدار معادل الکتریکی بر اساس اثر فتوولتائیک با مطالعات انجام شده بر روی شبیه سازی سیستم انرژی خورشیدی ارائه شده است. این مدل خطی که از دو دیود تشکیل شده است، نحوه رفتار سلول خورشیدی جهت تولید برق را نشان می دهد. با استفاده از نرم افزار MATLAB شبیه سازی های مورد نظر را انجام داده ایم. هدف ما در این تحقیق محاسبه ی حداقل مقدار خطا برای پارامتر های مجهول مدار می باشد که این خطا به واسطه ی جذر میانگین مربعات خطاها (RMSE) بدست می آید. برای تعیین دقیق و قابل اعتماد پارامترهای مدل دو دیودی، یک روش بهینه سازی مبتنی بر هوش جمعی به نام الگوریتم جستجوی فاخته در این مقاله ارائه شده است. با توجه به مدل مورد نظر که قصد مطالعه آن را با الگوریتم پیشنهادی داریم، برای حصول حداقل مقدار خطا، پارامترهای مجهول مدار را بدست آورده و با روش های دیگر مقایسه می کنیم. نتایج نشان می دهد مقدار RMSE الگوریتم پیشنهادی با مقدار جمعیت اولیه 50 و تعداد دور تکرار 1000، برابر با 2-10 × 56/3 است که نتیجه بهتری نسبت به سایر الگوریتم ها در اختیار ما قرار می دهد. متوسط زمان اجرای این الگوریتم 81/15 میلی ثانیه در هر بار اجرا می باشد.
کلید واژگان: سلول فتوولتائیک، تخمین پارامترها، الگوریتم جستجوی فاخته، جذر میانگین مربعات خطاها (RMSE)Journal of Technovations of Electrical Engineering in Green Energy System, Volume:3 Issue: 3, 2024, PP 27 -42In this paper, an electrical equivalent circuit model based on the photovoltaic effect has been presented with the studies done on the simulation of the solar energy system. This linear model, which consists of two diodes, shows the behavior of a solar cell to produce electricity. We have done the desired simulations using MATLAB software. Our goal in this research is to calculate the minimum error value for the unknown parameters of the circuit, which is obtained by the root-mean-square error (RMSE). In order to accurately and reliably determine the parameters of the double-diode model, an optimization method based on collective intelligence called the Cuckoo search algorithm is presented in this article. According to the desired model that we intend to study with the proposed algorithm, to obtain the minimum error value, we calculate the unknown parameters of the circuit and compare them with other methods. The results show that the RMSE value of the proposed algorithm with the initial population value of 50 and the number of iteration rounds of 1000 is equal to 3.56*10-2, which provides better results than other algorithms. The average execution time of this algorithm is 15.81 milliseconds per every iteration round.
Keywords: Photovoltaic Cell, Parameters Estimation, Cuckoo Search Algorithm, Root-Mean-Square Error -
داده های سری زمانی چندمتغیره در زمینه های مختلف مانند بیوانفورماتیک، زیست شناسی، ژنتیک، نجوم، علوم جغرافیایی و امور مالی یافت می شوند. بسیاری از این مجموعه داده ها دارای داده گمشده هستند. جایگذاری داده های گمشده سری زمانی چندمتغیره، یکی از مباحث چالش برانگیز است و قبل از فرایند یادگیری یا پیش بینی سری های زمانی باید با دقت مورد توجه و بررسی قرار گیرد. تحقیقات فراوانی در استفاده از روش های مختلف برای جایگذاری داده های گمشده سری زمانی انجام شده است که به طورمعمول شامل روش های تجزیه و تحلیل و مدل سازی های ساده در کاربردهای خاص و یا سری های زمانی تک متغیره هستند. در این مقاله یک نسخه بهبود یافته از درون یابی معکوس فاصله وزن دار برای جایگذاری داده های گمشده پیشنهاد شده است. روش درون یابی معکوس فاصله وزن دار دو محدودیت اساسی دارد: 1) یافتن بهترین نقاط نزدیک تر به داده های گمشده 2) انتخاب توان تاثیر بهینه برای همسایگان داده گمشده. برای بهبود روش درون یابی، از خوشه بندی k-means استفاده شده است، تا همسایه های با بیشترین شباهت به الگوی داده ای انتخاب شوند. از آنجا که میزان تاثیر هر یک از همسایه ها بر روی داده گمشده متفاوت است، از الگوریتم جستجوی فاخته برای تعیین توان تاثیر همسایگی استفاده می شود. برای ارزیابی عملکرد روش پیشنهادی، از پنج معیار ارزیابی شناخته شده استفاده می شود. نتایج تجربی بر روی چهار مجموعه داده UCI با درصدهای مختلف گمشدگی مورد بررسی قرار گرفته و در مجموع الگوریتم پیشنهادی نسبت به سه روش مقایسه ای دیگر عملکرد بهتر و به طور میانگین حدود 05/0 خطای RMSE، 04/0 خطای MAE، 003/0 خطای MSE و 5 درصد خطای MAPE داشته است. میزان همبستگی داده های واقعی و مقدار برآورد شده در روش پیشنهادی بسیار مطلوب و در حدود 99 درصد است.
کلید واژگان: جایگذاری داده های گمشده، درون یابی IDW، الگوریتم جستجوی فاخته، خوشه بندی k-means، سری های زمانی چندمتغیرهMultivariate time series data are found in a variety of fields such as bioinformatics, biology, genetics, astronomy, geography and finance. Many time series datasets contain missing data. Multivariate time series missing data imputation is a challenging topic and needs to be carefully considered before learning or predicting time series. Frequent researches have been done on the use of different techniques for time series missing data imputation, which usually include simple analytic methods and modeling in specific applications or univariate time series. In this paper, a hybrid approach to obtain missing data is proposed. An improved version of inverse distance weighting (IDW) interpolation is used to missing data imputation. The IDW interpolation method has two major limitations: 1) finding closest points to missing data 2) Choosing the optimal effect power for missing data neighbors. Clustering has been used to remove the first constraint and find closest points to the missing data. With the help of clustering, the search radius and the number of input points that are supposed to be used in interpolation calculations are limited and controlled, and it is possible to determine which points are used to determine the value of a missing data.Therefore, most similar data to the missing data are found. In this paper, the k-maens clustering method is used to find similar data. This method has been more accurate than other clustering methods in multivariate time series. Evolutionary algorithms are used to find the optimal effect power of each data point to remove the second constraint. Considering that each sample within each cluster has a different effect on the estimation of missing data, cuckoo search is used to find the effect on missing data. The cuckoo search algorithm is applied to the data of each cluster, and each data sample that has more similarity with the missing data has more influence, and each data sample that has less similarity has less influence and has less influence in determining the amount of missing data. Among evolutionary algorithms, evolutionary cuckoo search algorithm is used due to high convergence speed, much less probability of being trapped in local optimal points, and ability to quickly solve high dimensional optimization problems in multivariate time series problems. To evaluate the performance of the proposed method, RMS, MAE, , MSE and MAPE criteria are used. Experimental results are investigated on four UCI datasets with different percentages of missingness and in general, the proposed algorithm performs better than the other three comparative methods with an average RMSE error of 0.05, MAE error of 0.04, MSE error of 0.003, and MAPE error of 5. The correlation between the actual data and the estimated value in the proposed method is about 99%.
Keywords: Missing Data imputation, IDW Interpolation, Cuckoo Search Algorithm, k-means Clustering, Multivariate Time Series -
محیط های چندابری شامل منابع متنوع قابل ملاحظه ای هستند که هزینه های زمان بندی کاربردهای جریان کاری در چنین محیط هایی می تواند به طور چشم گیری کاهش یابد و همچنین محدودیت ارایه منابع توسط فراهم کنندگان تجاری ابر رفع شود. بر این اساس، این تحقیق به مساله زمان بندی کاربردهای جریان کاری علمی در محیط چندابری تحت قید مهلت زمانی با هدف کمینه سازی هزینه می پردازد. در این مقاله با به کارگیری الگوریتم جستجوی فاخته که یکی از مشهورترین روش های جستجوی فراابتکاری می باشد، الگوریتمی برای مساله زمان بندی کاربردهای جریان کاری در محیط چندابری ارایه شده است. الگوریتم فراابتکاری جستجوی فاخته قادر است در مدت زمانی کوتاه فضای جواب را جستجو نموده و جواب هایی را در همسایگی جواب بهینه سراسری بیابد که به آن نزدیک می باشد. نتایج به دست آمده نشان می دهند که راهکار پیشنهادی این تحقیق در مقایسه با دیگر راهکارهای فراابتکاری در موارد کاهش هزینه کارایی بهتری داشته و همچنین جواب های به دست آمده از الگوریتم فراابتکاری پیشنهادی، در حد مطلوبی نزدیک به جواب های بهینه سراسری به دست آمده از مدل ریاضی است.
کلید واژگان: چندابری، زمان بندی، جریان کاری علمی، بهینه سازی هزینه، الگوریتم جستجوی فاختهMulti-cloud environments consist of the considerable variety of resources where the cost of scheduling workflow applications can be significantly reduced in such environments and the resource limitationsimposed by commercial cloud providers can bealso overcome. Accordingly, this study addresses the scheduling of scientific workflowapplications in a multi-cloud environment under a deadline with the aim of minimizing costs. In this paper,an algorithm for scheduling of workflow applications in multi-cloud environment is presented using the cuckoo search algorithm which is one of the most popular meta-heuristic methods. The Cuckoo Search Algorithm is able to search the solution space in a short time and find solutions in the vicinity of the optimal global solution that is close to it. The results show that the proposed approach of this research has better performance in comparison with other meta- heuristic approach in terms of cost reduction. Moreover, the obtained solutions of the proposed meta- heuristic algorithm are in a desirable degree close to the global optimal solutions of mathematical model.
Keywords: Multi-cloud, scheduling, scientific workflow, cost optimization, Cuckoo search algorithm -
Considering the significant advancements in autonomous vehicle technology, research in this field is of interest to researchers. To automatic parking, controlling steer angle, gas hatch, and brakes need to be learned. Due to the increase in the number of cars and road traffic, car parking space has decreased. Its main reason is information error. Because the driver does not receive the necessary information or receives it too late, he cannot take appropriate action against it. This paper uses two phases: the first phase, for goal coordination, was used genetic algorithms and the Cuckoo search algorithm was used to increase driver information from the surroundings. Using the Cuckoo search algorithm and considering the limitations, it increases the driver’s level of information from the environment. Also, by exchanging information through the application, it enables the information to reach the driver much more quickly and the driver reacts appropriately at the right time. The suggested protocol is called the multi-objective decision-based solution (MODM)-based solution. Here, the technique is assessed through extensive simulations performed in the NS-3 environment. Based on the simulation outcomes, it is indicated that the parking system performance metrics are enhanced based on the detection rate, false-negative rate, and false-positive rate.
Keywords: Location allocation problem, cuckoo search algorithm, automatic parking, multi-objective decision-based solution (MODM) -
The uniaxial compressive strength of weak rocks (UCSWR) is among the essential parameters involved for the design of underground excavations, surface and underground mines, foundations in/on rock masses, and oil wells as an input factor of some analytical and empirical methods such as RMR and RMI. The direct standard approaches are difficult, expensive, and time-consuming, especially with highly fractured, highly porous, weak, and homogeneous rocks. Numerous endeavors have been made to develop indirect approaches of predicting UCSWR. In this research work, a new intelligence method, namely relevance vector regression (RVR), improved by the cuckoo search (CS) and harmony search (HS) algorithms is introduced to forecast UCSWR. The HS and CS algorithms are combined with RVR to determine the optimal values for the RVR controlling factors. The optimized models (RVR-HS and RVR-CS) are employed to the available data given in the open-source literature. In these models, the bulk density, Brazilian tensile strength test, point load index test, and ultrasonic test are used as the inputs, while UCSWR is the output parameter. The performances of the suggested predictive models are tested according to two performance indices, i.e. mean square error and determination coefficient. The results obtained show that RVR optimized by the HS model can be successfully utilized for estimation of UCSWR with R2 = 0.9903 and MSE = 0.0031203.
Keywords: Uniaxial compressive strength, weak rocks, relevance vector regression, cuckoo search algorithm, Harmony Search Algorithm -
امروزه با افزایش میزان تقاضا برای انرژی الکتریکی استفاده از منابع تولید پراکنده و به ویژه منابع تجدید پذیر روز به روز در حال رشد می باشد که این منابع در غالب ریزشبکه ها توان مورد نیاز سیستم را تامین می کنند. بهره برداری از منابع تجدیدپذیر معمولا با عدم قطعیت همراه می باشد. از این رو، در این مقاله در ابتدا آرایش بهینه تولید منابع تولید پراکنده موجود در سیستم در دو مد جزیره ای و اتصال به شبکه تعیین می گردند. از آنجایکه بهره برداری از ریزشبکه در حضور منابع تولید پراکنده و قیود مختلف، یک مسئله بهینه سازی با قیود متعدد می باشد در این مطالعه از الگوریتم جستجوی فاخته که یک الگوریتم فراابتکاری با سرعت همگرایی بالا می باشد به منظور حل مسئله بهینه سازی و تعیین آرایش تولید واحدها استفاده شده است. به منظور کاهش تاثیر عدم قطعیت توان خروجی سیستم فتوولتاییک از ذخیره سازی انرژی استفاده شده است که در این مقاله ظرفیت بهینه آن متناسب با شرایط بهره برداری تعیین می گردد. الگوریتم پیشنهادی برای تعیین ظرفیت بهینه باتری در یک ریزشبکه نمونه پیاده سازی شده است. نتایج بدست آمده نشان دهنده کارآیی روش پیشنهادی برای تعیین آرایش بهینه منابع تولید پراکنده و ظرفیت بهینه باتری دارد.کلید واژگان: ریزشبکه، الگوریتم جستجوی فاخته، ذخیره ساز انرژی، بهره برداری اقتصادی، سیستم فتوولتاییکThe current demand in the power system has led to increased usage of the Distributed Generation (DG) and renewable resources. The renewable resources can efficiently supply the loads in the micro grids. The output power generation of renewable energy resources is unpredictable. Hence, in this paper the optimal generation dispatch of the DGs in micro grids in both grid-connected and islanded modes is determined. Since the operation of the micro grid in presence of DGs and various constraints is a complicated optimization problem, in this paper a meta-heuristic Cuckoo search (CS) algorithm with high convergence speed is used. In order to reduce the uncertainty of the output power of photovoltaic system the energy storage system is implemented and the optimal capacity of the storage is determined based on operation conditions. The proposed algorithm for determining the optimal capacity of the battery in a sample micro grid is applied. The results show the effectiveness of the proposed method for determining the optimal dispatch of the DGs and capacity of the energy storage system.Keywords: Micro grid, Cuckoo search algorithm, Energy storage System, Economic dispatch, Photovoltaic system
-
Journal of Industrial Engineering and Management Studies, Volume:4 Issue: 2, Summer-Autumn 2017, PP 52 -63Precedence constrained sequencing problem (PCSP) is related to locate the optimal sequence with the shortest traveling time among all feasible sequences. In PCSP, precedence relations determine sequence of traveling between any two nodes. Various methods and algorithms for effectively solving the PCSP have been suggested. In this paper we propose a cuckoo search algorithm (CSA) for effectively solving PCSP. CSA is inspired by the life of a bird named cuckoo. As basic CSA at first was introduced to solve continuous optimization problem, in this paper to find the optimal sequence of the PCSP, some schemes are proposed with modifications in operators of the basic CSA to solve discrete precedence constrained sequencing problem. To evaluate the performance of proposed algorithm, several instances with different sizes from the literature are tested in this paper. Computational results show the good performance of the proposed algorithm in comparison with the best results of the literature.Keywords: Precedence constrained sequencing problem, Mixed integer programming, Cuckoo search algorithm
-
با توجه به پیچیدگی بالای مسائل زمان بندی، روش های کلاسیک جواب گوی حل این مسئله نیستند، بنابراین امروزه از الگوریتم های فرااکتشافی در حل آن استفاده می شود. در این مقاله الگوریتم بهینه سازی فاخته به عنوان یکی از جدیدترین و قوی ترین روش های بهینه سازی تکاملی برای حل مسئله زمان بندی کارکارگاهی انعطاف پذیراستفاده شده است. در الگوریتم پیشنهادی برای بهبود پاسخ ها، ترتیب ورود جمعیت اولیه بر اساس الگوریتم NEH-D، که مبتنی بر کاهش زمان اجرای هر یک از کارها است، تعیین شده است. سپس ماشین های فعال توسط خوشه بندی مارکوف گروه بندی می گردند، تا در هر مرحله از عملیات، انتخاب ماشین از بین ماشین های فعال صورت گیرد. بنابراین تعداد جواب ها ی انتخابی برای الگوریتم جستجوی فاخته محدود می گردد، تا سرعت اجرای الگوریتم فاخته افزایش یابد. درنهایت نیز از الگوریتم جستجوی فاخته برای تخصیص ماشین ها به کارها و از پرواز لوی برای بهبود در الگوریتم فاخته جهت جستجوی سراسری در کنار جستجوی محلی استفاده شده است. الگوریتم پیشنهادی بر روی مجموعه داده استاندارد Kacem، Brandimarte و داده ها ی مقالات مرتبط ارزیابی شده است. نتایج تجربی نشان می دهد، که الگوریتم پیشنهادی سرعت بالاتری در رسیدن به جواب نهایی و همچنین همگرایی بالایی در جواب ها دارد.کلید واژگان: زمان بندی کار کارگاهی انعطاف پذیر_ الگوریتم جستجوی فاخته، الگوریتم NEH، D، جستجوی همسایگی، خوشه بندی مارکوف، پرواز لویConsidering the high complexity of scheduling problems, classic approaches fail to find the solution efficiently. Therefore, meta-heuristic algorithms are used for this purpose. In this paper, Cuckoo optimization algorithm (COA) is used as one of the novel and most effective evolutionary optimization algorithms for flexible job shop scheduling. In the proposed approach, for better solutions, the initial population is determined using NEH-D algorithm, which considers the completion time minimization of each job. Then active machines are grouped using Markov clustering, so that the assigned machine is chosen from the active ones, hoping that the possible solutions of COA are bounded and the execution speed of the algorithm is increased. Finally, COA is applied for job-machine assignment and Levy flight is used to improve the global search of the algorithm. The proposed approach is evaluated on standard datasets such as Kacem, Brandimarte and other related data. The experimental results show that the proposed algorithm is capable of finding the final solution with lower computational complexity and has higher convergence rate.Keywords: Flexible job shop scheduling, cuckoo search algorithm, NEH, D algorithm, neighborhood search, Markov clustering, Levy flight
-
Smart distribution networks (SDNs) plays a significant role in future power networks. Accordingly, the optimal scheduling of such networks, which include planning of consumers and production sections, inconsiderably concerned in recent research studies. In this paper, the optimal planning of energy and reserve of SDNs has been studied. Technical constraints of distribution network and power generation units are satisfied in the optimal solution of day-ahead scheduling of the network. The proposed model is studied on a case instance for evaluating the performance and analyzing the optimal solution. A modified IEEE 32-bus test system is considered as test system, in which three wind turbines and four diesel generators are placed. Industrial, residential and commercial consumers can use demand response programs to change electrical energy consuming scheduling. In this paper, incentive based demand response programs are studied for improving the optimal solution. Two demand response providers and two industrial loads are taken into account for employing demand response programs. The obtained optimal solutions are prepared and analyzed, which shows the effectiveness of the proposed model.
Keywords: DVR, Voltage sag mitigation, Tree fuzzy rule based classifier, Cuckoo search algorithm -
A new technique presents to improve the performance of dynamic voltage restorer (DVR) for voltage sag mitigation. This control scheme is based on cuckoo search algorithm with tree fuzzy rule based classifier (CSA-TFRC). CSA is used for optimizing the output of TFRC so the classification output of the network is enhanced. While, the combination of cuckoo search algorithm, fuzzy and decision tree classifier can create a hybrid classifier. Here, Fuzzy and decision tree algorithm will be sufficiently combined with cuckoo search algorithm. The proposed CSA-TFRC algorithm based DVR is simulated in MATLAB software with comparison of traditional DVR and neuro-fuzzy based DVR. Results show the ability of proposed algorithm to detect the voltage sag and make a fast compensation deals.Keywords: DVR, Voltage sag mitigation, Tree fuzzy rule based classifier, Cuckoo search algorithm
-
WirelessSensor Network (WSN) is one of the most important technologies of the XXI century whichis becoming the next step in information revolution. The WSNis divided in two main categories, Homogenous Wireless Sensor Networks and Heterogeneous Wireless Sensor Networks. Heterogeneous wireless sensor network consists of several nodes with different functions and characters. Minimizing the number of super nodes in these networks is one of the challenging issues. Several approaches have been presented to solve this problem up to now; such as Genetic Algorithm, Bee Algorithm, PSO Algorithm and etc. In this paper a novel meta-heuristic algorithm Cuckoo Search Algorithm (CSA), is introduced to solve this problem. The main contribution of this paper is to reach an optimum trade-off between the number of super nodes and network efficiency. MATLAB, simulation toolkit, is used to simulate the efficiency of this method. Simulation results show that proposed algorithm quickly finds a good solution and has better performance than Genetic based algorithm.Keywords: Heterogeneous Wireless Sensor Network, Cuckoo Search Algorithm, Optimization Algorithm, Meta, heuristic
-
Journal of Operation and Automation in Power Engineering, Volume:1 Issue: 2, Summer - Autumn 2013, P 136Accurate and effective electricity price forecasting is critical to market participants in order to make an appropriate risk management in competitive electricity markets. Market participants rely on price forecasts to decide on their bidding strategies، allocate assets and plan facility investments. However، due to its time variant behavior and non-linear and non-stationary nature، electricity price is a complex signal. This paper presents a model for short-term price forecasting according to similar days and historical price data. The main idea of this article is to present an intelligent model to forecast market clearing price using a multilayer perceptron neural network، based on structural and weights optimization. Compared to conventional neural networks، this hybrid model has high accuracy and is capable of converging to optimal minimum. The results of this forecasting method for Market Clearing Price (MCP) of Iranian and Nord Pool Electricity Markets، as well as Locational Marginal Price (LMP) forecasting in PJM electricity market، verify the effectiveness of the proposed approach in short-term price forecasting.Keywords: Short, term Price Forecasting, Artificial Neural Network, CUCKOO Search Algorithm, Genetic Algorithm, Similar Days
-
نشریه منادی امنیت فضای تولید و تبادل اطلاعات (افتا)، سال دوم شماره 1 (پیاپی 3، بهار و تابستان 1392)، ص 13در شبکه های حس گر بی سیم ناهمگن به طور معمول دو نوع گره حس گر «سرخوشه» و «عادی» وجود دارد. سرخوشه ها انرژی مصرفی بیشتری نسبت به گره های عادی دارند، بنابراین انتخاب بهینه و کمینه کردن تعداد آنها برای افزایش عمر شبکه اهمیت ویژه ای دارد. مساله انتخاب بهینه و کمینه کردن تعداد سرخوشه ها یک مساله NP-Hard است، لذا جهت حل این مساله روش های مختلف غیر قطعی مانند الگوریتم های اکتشافی و تکاملی مانند الگوریتم ژنتیک و الگوریتم کلونی زنبور و غیره ارائه شده اند. در این مقاله از یک الگوریتم متاهیورستیک جدید به نام الگوریتم جستجوی فاخته (CSA) که بر پایه تقلید از رفتار پرندگان است برای حل این مساله استفاده شده است. مهم ترین هدف این مقاله به دست آوردن مقدار بهینه بین تعداد سرخوشه و انرژی مصرفی شبکه است. جهت شبیه سازی روش پیشنهادی از نرم افزار متلب استفاده شده است. نتایج به دست آمده از شبیه سازی بهبود کارایی و زمان اجرای الگوریتم را نشان می دهد.کلید واژگان: شبکه حس گر بی سیم، الگوریتم فاخته، کاهش انرژی، کنترل توپولوژی، افزایش عمر شبکه و سرخوشهHeterogeneous wireless sensor network consists of several nodes with different functions and characters. Energy minimizing in these networks is one of the challenging issues. Several approaches have been presented to solve this problem up to now; such as Genetic Algorithm, Bee Algorithm, PSO Algorithm and etc. In this paper a novel meta-heuristic algorithm Cuckoo Search Algorithm (CSA), is introduced to solve this problem. The main contribution of this paper is to reach an optimum trade-off between the number of super nodes and network efficiency to decrease the energy consumption. MATLAB, simulation toolkit, is used to simulate the efficiency of this method. Simulation results show that proposed algorithm quickly finds a good solution and has better performance than Genetic based algorithm.Keywords: Wireless Sensor Network, Cuckoo Search Algorithm, Energy Consumption, Topology Control, Lifetime, Supernode
-
In this paper optimum design of truss structures for both discrete and continuous variables based on the Cuckoo Search (CS) algorithm is presented. The CS is one of the recently developed population based algorithms inspired by the behavior of some cuckoo species together with the Lévy flight behavior of some birds and fruit flies. In order to demonstrate the effectiveness and robustness of the present method, minimum weight design of truss structures is performed and the results of the CS and the selected well-known meta-heuristic search algorithms are compared for both discrete and continuous design of three benchmark truss structures.Keywords: optimal design, meta, heuristic search, cuckoo search algorithm, truss structures
-
International Journal of Optimization in Civil Engineering, Volume:2 Issue: 1, Winter 2012, PP 1 -14Different kinds of meta-heuristic algorithms have been recently utilized to overcome the complex nature of optimum design of structures. In this paper, an integrated optimization procedure with the objective of minimizing the self-weight of real size structures is simply performed interfacing SAP2000 and MATLAB® softwares in the form of parallel computing. The meta-heuristic algorithm chosen here is Cuckoo Search (CS) recently developed as a type of population based algorithm inspired by the behavior of some Cuckoo species in combination with the Lévy flight behavior. The CS algorithm performs suitable selection of sections from the American Institute of Steel Construction (AISC) wide-flange (W) shapes list. Strength constraints of the AISC load and resistance factor design specification, geometric limitations and displacement constraints are imposed on frames. Effective time-saving procedure using simple parallel computing, as well as utilizing reliable analysis and design tool are also some new features of the present study. The results show that the proposed method is effective in optimizing practical structures.Keywords: optimal design, steel structures, cuckoo search algorithm, parallel computing
-
International Journal of Optimization in Civil Engineering, Volume:1 Issue: 4, Autumn 2011, PP 507 -520This paper is concerned with the economical comparison between two commonly used configurations for double layer grids and determining their optimum span-depth ratio. Two ranges of spans as small and big sizes with certain bays of equal length in two directions and various types of element grouping are considered for each type of square grids. In order to carry out a precise comparison between different systems, optimum design procedure based on the Cuckoo Search (CS) algorithm is developed. The CS is a meta-heuristic algorithm recently developed that is inspired by the behavior of some Cuckoo species in combination with the Lévy flight behavior of some birds and insects. The design algorithm obtains minimum weight grid through appropriate selection of tube sections available in AISC Load and Resistance Factor Design (LRFD). Strength constraints of AISC-LRFD specification and displacement constraints are imposed on grids. The comparison is aimed at finding the depth at which each of the different configurations shows its advantages. The results are graphically presented from which the optimum depth can easily be estimated for each type, while the influence of element grouping can also be realized at the same time.Keywords: Double layer grids, Cuckoo Search algorithm, Optimization, Span, depth ratio, Optimum depth, Element grouping
-
Improved Cuckoo Search Algorithm for Global Optimization
The cuckoo search algorithm is a recently developedmeta-heuristic optimization algorithm, which is suitable forsolving optimization problems. To enhance the accuracy andconvergence rate of this algorithm, an improved cuckoo searchalgorithm is proposed in this paper. Normally, the parametersof the cuckoo search are kept constant. This may lead todecreasing the efficiency of the algorithm. To cope with thisissue, a proper strategy for tuning the cuckoo searchparameters is presented. Considering several well-knownbenchmark problems, numerical studies reveal that theproposed algorithm can find better solutions in comparisonwith the solutions obtained by the cuckoo search. Therefore, itis anticipated that the improved cuckoo search algorithm cansuccessfully be applied to a wide range of optimizationproblems.
Keywords: Cuckoo search algorithm, global optimization, Lévyflight, Meta-heuristic, tuning
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.