فهرست مطالب

International Journal of Optimization in Civil Engineering
Volume:2 Issue: 1, Winter 2012

  • تاریخ انتشار: 1391/02/10
  • تعداد عناوین: 9
|
  • A. Kaveh, T. Bakhshpoori, M. Ashoory Pages 1-14
    Different kinds of meta-heuristic algorithms have been recently utilized to overcome the complex nature of optimum design of structures. In this paper, an integrated optimization procedure with the objective of minimizing the self-weight of real size structures is simply performed interfacing SAP2000 and MATLAB® softwares in the form of parallel computing. The meta-heuristic algorithm chosen here is Cuckoo Search (CS) recently developed as a type of population based algorithm inspired by the behavior of some Cuckoo species in combination with the Lévy flight behavior. The CS algorithm performs suitable selection of sections from the American Institute of Steel Construction (AISC) wide-flange (W) shapes list. Strength constraints of the AISC load and resistance factor design specification, geometric limitations and displacement constraints are imposed on frames. Effective time-saving procedure using simple parallel computing, as well as utilizing reliable analysis and design tool are also some new features of the present study. The results show that the proposed method is effective in optimizing practical structures.
    Keywords: optimal design, steel structures, cuckoo search algorithm, parallel computing
  • S. Adarsh Pages 15-28
    To ensure efficient performance of irrigation canals, the losses from the canals need to be minimized. In this paper a modified formulation is presented to solve the optimization model for the design of different canal geometries for minimum seepage loss, in meta-heuristic environment. The complex non-linear and non-convex optimization model for canal design is solved using a probabilistic search algorithm namely Probabilistic Global Search Lausanne (PGSL). The solutions are found to be competitive to those reported in literature while applied for different example problems. To suit for real field applications, three site specific constraints are considered and the sensitivity of solutions for the most popular trapezoidal canals is investigated. The study shows the potential of the proposed approach to perform optimal design of irrigation canals for minimum seepage loss.
    Keywords: irrigation canals, optimal design, probabilistic global search lausanne, seepage loss
  • S. Gholizadeh, M.R. Sheidaii, S. Farajzadeh Pages 29-45
    The main contribution of the present paper is to train efficient neural networks for seismic design of double layer grids subject to multiple-earthquake loading. As the seismic analysis and design of such large scale structures require high computational efforts, employing neural network techniques substantially decreases the computational burden. Square-on-square double layer grids with the variable length of span and height are considered. Back-propagation (BP), radial basis function (RBF) and generalized regression (GR) neural networks are trained for efficiently prediction of the seismic design of the structures. The numerical results demonstrate the superiority of the GR over the BP and RBF neural networks.
    Keywords: double layer grids, seismic design, neural network, back propagation, radial basis function, generalized regression
  • S. Shojaee, M. Mohamadianb, N. Valizadeh Pages 47-70
    In the present paper, an approach is proposed for structural topology optimization based on combination of Radial Basis Function (RBF) Level Set Method (LSM) with Isogeometric Analysis (IGA). The corresponding combined algorithm is detailed. First, in this approach, the discrete problem is formulated in Isogeometric Analysis framework. The objective function based on compliance of particular locations of materials in the structure is used and find the optimal distribution of material in the domain to minimize the compliance of the system under a volume constraint. The refinement is employed for construction of the physical mesh to be consistent with the mesh is used for level set function. Then a parameterized level set method with radial basis functions (RBFs) is used for structural topology optimization. Finally, several numerical examples are provided to confirm the validity of the method.
    Keywords: isogeometric analysis, topology optimization, shape optimization, level set method, radial basis functions
  • A. Tahershamsia, A. Kaveh, R. Sheikholeslamia, S. Talatahari Pages 71-80
    The Big Bang-Big Crunch (BB–BC) method is a relatively new meta-heuristic algorithm which inspired by one of the theories of the evolution of universe. In the BB–BC optimization algorithm, firstly random points are produced in the Big Bang phase then these points are shrunk to a single representative point via a center of mass or minimal cost approach in the Big Crunch phase. In this paper, the BB–BC algorithm is presented for optimal cost design of water distribution systems and employed to optimize different types of hydraulic networks with discrete variables. The results demonstrate the efficiency of the proposed method compared to other algorithms.
    Keywords: water distribution systems, optimal design, big bang–big crunch algorithm
  • S. Kazemzadeh Azad, S. Kazemzadeh Azad, A. Jayant Kulkarni Pages 81-101
    The present study is an attempt to propose a mutation-based real-coded genetic algorithm (MBRCGA) for sizing and layout optimization of planar and spatial truss structures. The Gaussian mutation operator is used to create the reproduction operators. An adaptive tournament selection mechanism in combination with adaptive Gaussian mutation operators are proposed to achieve an effective search in the design space. The standard deviation of design variables is used as a key factor in the adaptation of mutation operators. The reliability of the proposed algorithm is investigated in typical sizing and layout optimization problems with both discrete and continuous design variables. The numerical results clearly indicated the competitiveness of MBRCGA in comparison with previously presented methods in the literature.
    Keywords: truss structures, sizing optimization, layout optimization, real, coded genetic algorithm, adaptive tournament selection, Gaussians mutation
  • M.A. Youssef, I.A. Mohammed, A.N. Ibraheem, I.M. Hussein Pages 103-113
    General Authority for Educational Buildings (GAEB) in Egypt is responsible for new construction and maintenance of the educational building [1]. According to the Sixth Five- Years Plan in Egypt, the program of educational structures includes new construction of about 2915 schools, with 39.8 thousand classes. Also, maintenance works for buildings about 1250 schools. These works needs a high budget but the available budget is less than the required budget. Therefore, GAEB should apply optimization techniqes to save cost and optimize the benefit from the avaliable budget with the same quality level or more. This paper aims to apply value engineering technique on educational building to maximuize the utiltization of the available constructuion and maintenace budget. In this paper value engineering technique, is applied on a model of primary school. The paper suggested that GAEB should construct a value engineering department included in its organization structure. Finally it draws overall conclusions about the application of value engineering (VE) in the GAEB in Egypt. Also, to get the optimum set of activities, alternatives for cost saving and maximize the utilization of the available funds for new construction and maintenance works. The value engineering technique application is based on data collected from GAEB.
    Keywords: value engineering (VE), optimum value, building design, cost saving
  • A. Afshar, S. Madadgar, M.R. Jalali, F. Sharifi Pages 115-136
    Ant colony optimization algorithms (ACOs) have been basically introduced to discrete variable problems and applied to different research domains in several engineering fields. Meanwhile, abundant studies have been already involved to adapt different ant models to continuous search spaces. Assessments indicate competitive performance of ACOs on discrete or continuous domains. Therefore, as potent optimization algorithms, it is encouraging to involve ant models to mixed-variable domains which simultaneously tackle discrete and continuous variables. This paper introduces four ant-based methods to solve mixed-variable problems. Each method is based upon superlative ant algorithms in discrete and/or continuous domains. Proposed methods’ performances are then tested on a set of three mathematical functions and also a water main design problem in engineering field, which are elaborately subject to linear and non-linear constraints. All proposed methods perform rather satisfactorily on considered problems and it is suggested to further extend the application of methods to other engineering studies.
    Keywords: ant colony optimization, mixed, variable problems, water main design
  • A. CsÉbfalvi Pages 137-152
    This paper provides a test method to make a fair comparison between different heuristics in structure optimization. When statistical methods are applied to the structural optimization (namely heuristics or meta-heuristics with several tunable parameters and starting seeds), the «one problem - one result» is extremely far from the fair comparison. From statistical point of view, the minimal requirement is a so-called «small-sample» according to the fundamental elements of the theory of the experimental design and evaluation and the protocol used in the drug development processes. The viability and efficiency of the proposed statistically correct methodology is demonstrated using the well-known ten-bar truss on a set of the heuristics from the brutal-force-search up to the most sophisticated hybrid approaches.
    Keywords: Statistical comparison, Kolmogorov, Smirnov test, Heuristics, Meta, heuristics, Structural optimization