به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

fuzzy-logic

در نشریات گروه فنی و مهندسی
  • S. Haghzad Klidbary *, M. Javadian
    In analyzing phenomena around us, clustering is among the most commonly used techniques in machine learning for comparing, and categorizing them into different groups based on intrinsic features. One of the main challenges facing clustering algorithms is selecting a suitable representative for each cluster. Existing algorithms often choose a single representative, which can lead to suboptimal performance on many datasets (especially asymmetric datasets). This process is completely dependent on the type of internal distribution of the clusters, and that single point may not be a suitable representative for that cluster. The proposed algorithm for dealing with datasets, inspired by the fuzzy ALM method and avoiding complex formulas, and calculations, initially breaks the system down into simpler (two-dimensional) systems. After spreading ink drops, by finding the vertical Narrow path and the horizontal narrow path, it selects a set of points as the representation of each cluster. The proposed algorithm, unlike many conventional algorithms, provides a representative set for each cluster and also enhances the algorithm's performance in dealing with datasets that have an asymmetric structure by introducing a new distance measure based on the KNN method and utilizing the set of prime numbers. The Accuracy, F1-Score, and AMI achieved when working with many low-dimensional, and high-dimensional datasets has been higher compared to algorithms such as FUALM, HiDUALM, K-Means, DBSCAN, DENCLUE and IRFLLRR and in some cases, the achieved accuracy has been equal to 100 percent.
    Keywords: Clustering, Similarity Measure, Fuzzy Logic, Ink Drop Spread, Active Learning Method, High-Dimensional Clustering
  • Nurul Husna Abd Wahab*, Mohd Hafizuddin Mat, Norezmi Md Jamal, Nur Hidayah Ramli

    In islanded microgrids, circulating currents among parallel inverters pose significant challenges to system stability and efficient power distribution. Traditional droop control methods often struggle to manage these currents effectively, leading to inefficiencies and potential system damage. This study introduces an advanced fuzzy-robust droop control strategy that integrates fuzzy logic with robust droop control to address these challenges. By incorporating fuzzy logic, the proposed strategy enhances the adaptability of droop control to varying system conditions, improving the management of circulating currents and ensuring more accurate power sharing among inverters. Comprehensive mathematical modeling and extensive simulation analyses validate the performance of this control strategy. The results show that the fuzzy-robust droop control method significantly outperforms conventional approaches, achieving up to a 70% reduction in circulating currents. This improvement leads to a substantial reduction in power losses and enhances the dynamic response under varying load conditions. Additionally, the strategy improves voltage and frequency regulation, contributing to the overall stability and reliability of the microgrid. The findings provide a robust solution to the longstanding issue of circulating currents, optimizing microgrid operations, and paving the way for more efficient and resilient distributed energy systems. The advanced control strategy presented in this study not only addresses critical challenges but also demonstrates the potential for innovative methodologies to meet the growing demands of future energy infrastructures, where reliability and efficiency are essential.

    Keywords: Circulating Current, Fuzzy-Robust Control, Islanded Microgrid, Power-Sharing, Fuzzy Logic, Robust Droop
  • مرتضی نورمهدی، محمدهادی زاهدی*

    مدیریت انرژی با استفده از اینترنت اشیا یک روش هوشمند برای کنترل مصرف و تولید انرژی است. با استفاده از حسگرها، دستگاه های هوشمند و شبکه های ارتباطی، می توان انرژی را به طور هوشمند و بهینه، مدیریت کرد. هدف پژوهش حاضر مدیریت انرژی براساس اینترنت اشیا می باشد. در این تحقیق ابتدا براساس مطالعات پیشین پنج شاخص(معیار) اصلی و بیست و دو زیرمعیار انتخاب شدند. به علت این که شیوه های دیمتل و تاپسیس قادر به رفع ابهام از ارزیابی های کلامی صورت گرفته توسط تصمیم گیرندگان نیستند، در همه این روش ها اعداد فازی مثلثی بکار برده شده است. جهت تجزیه و تحلیل داده های تحقیق، ابتدا به رتبه بندی شاخص ها بر اساس میزان اثرگذاری و اثرپذیری هر یک از آن ها و بررسی نوع ارتباط عوامل با یکدیگر با استفاده از روش دیمتل فازی پرداخته شد. بر این اساس برای مدیریت انرژی براساس اینترنت اشیا، هزینه انرژی با وزن 04622/0 رتبه اول را کسب کرد. معیار منافع اجتماعی با وزن 04604/0 رتبه دوم و معیار پروتکل ها و استانداردها با وزن 04601/0 رتبه سوم را کسب کرده است.

    کلید واژگان: مدیریت انرژی، اینترنت اشیا، اینترنت انرژی، منطق فازی، سیستم های هوشمند
    Morteza Nourmehdi, Mohammadhadi Zahedi *

    Energy management based on the Internet of Things is an intelligent method to control energy consumption and production. Energy can be managed intelligently and optimally using sensors, smart devices, and communication networks. The current research aims to extract effective indicators of energy management based on the Internet of Things. This research extracted five main indicators (criteria) and twenty-two sub-criteria from previous studies. While DIMTEL and TOPSIS methods cannot resolve the ambiguity of the verbal evaluations made by the decision-makers, triangular fuzzy numbers were used in all these techniques. To analyze the research data, the indicators were ranked based on the effectiveness of each of them, and the type of relationship between the factors was investigated using the fuzzy Dimetal method. Based on this,, energy cost, has won first place in energy management based on the Internet of Things. The criterion of social benefits, won second place, and the criterion of protocols and standards, won third place.

    Keywords: Energy Management, Internet Of Things, Internet Of Energy, Fuzzy Logic, Intelligent Systems
  • محمدرضا مروی نام*

    ایمنی هوانوردی همواره یکی از موضوعات مهم و مورد توجه در صنعت حمل ونقل هوایی بوده است. از زمان نخستین پرواز بشر، حوادث و سوانح هوایی در سراسر جهان منجر به شکل گیری تلاش های گسترده ای برای بهبود ایمنی پروازها شده است. شناسایی عوامل موثر در بروز این حوادث و تحلیل دقیق آن ها می تواند به کاهش سوانح و افزایش ایمنی پروازها کمک شایانی نماید. در این راستا، مدل ها و نظریه های متعددی برای ارزیابی عوامل تاثیرگذار بر ایمنی هوانوردی توسعه یافته اند. در مواردی که داده های تاریخی کافی در دسترس نباشد، استفاده از منطق فازی و تحلیل سلسله مراتبی فازی، در ترکیب با نظرات خبرگان، می تواند جایگزین مناسبی برای ارزیابی عوامل فنی موثر در ایمنی هوانوردی باشد.این تحقیق با بهره گیری از مدل تحلیل سلسله مراتبی فازی (FAHP)، به ارزیابی مولفه های فنی موثر در ایمنی هوانوردی پرداخته است. برای این منظور، از تقسیم بندی پنج گانه شورای بین المللی حمل ونقل هوایی (IATA) شامل عوامل انسانی، فنی، محیطی، سازمانی و اطلاعات ناقص به عنوان معیارهای اصلی و 36 زیرمعیار استفاده شده است. نتایج تحقیق نشان می دهد که تحلیل سلسله مراتبی فازی در مقایسه با مدل سلسله مراتبی سنتی، دقت بالاتری در ارزیابی عوامل فنی ایمنی هوانوردی دارد. به طور خاص، یافته ها حاکی از آن است که عوامل فنی و انسانی بالاترین وزن را در میان سایر معیارها به خود اختصاص داده اند. یکی دیگر از نتایج مهم این تحقیق، تاثیر بالای اطلاعات ناقص در کاهش سطح ایمنی هوانوردی است. عدم دسترسی به داده های کامل و به روز می تواند روند تصمیم گیری را تحت تاثیر قرار دهد و به بروز خطرات بیشتری منجر شود. به کارگیری مدل تحلیل سلسله مراتبی فازی به سازمان های هواپیمایی این امکان را می دهد که بر روی عوامل کلیدی تمرکز کنند و با اولویت بندی دقیق، برنامه های موثری برای بهبود ایمنی پیاده سازی نمایند.

    کلید واژگان: ایمنی هوانوردی - عوامل فنی، AHP، منطق فازی
    Mohammadreza Marvinam *

    Aviation Safety has always been one of the key and important topics in the aviation industry. Since the first human flight, aviation accidents and incidents worldwide have led to extensive efforts to improve flight safety. Identifying the factors contributing to these accidents and accurately analyzing them can greatly assist in reducing incidents and enhancing flight safety. In this regard, various models and theories have been developed to assess the factors influencing aviation safety. When sufficient historical data is unavailable, using fuzzy logic and fuzzy analytical hierarchy process (FAHP), in combination with expert opinions, can be an appropriate alternative for evaluating the technical factors affecting aviation safety. This study employs the fuzzy analytical hierarchy process (FAHP) to evaluate the technical components influencing aviation safety. For this purpose, the five-part classification from the International Air Transport Association (IATA), including human, technical, environmental, organizational, and incomplete information factors, was used as the main criteria, with 36 sub-criteria. Specifically, the findings show that technical and human factors hold the highest weight among the other criteria.  another significant finding of this study is the high impact of incomplete information on reducing aviation safety levels. The lack of access to complete and up-to-date data can affect decision-making processes and lead to increased risks. By employing FAHP, aviation organizations can focus on key factors and implement effective safety improvement programs through precise prioritization.

    Keywords: Aviation Safety, Technical Factors, AHP, Fuzzy Logic
  • محمدمهدی کیخا*، سامان براهویی

    ساختارهای گراف نقشی کلیدی در مدل سازی روابط در زمینه های مختلف، از جمله شبکه های اجتماعی، پایگاه های دانش و شبکه های زیستی، دارند. با افزایش ابعاد این شبکه ها، کارایی روش های تحلیل مبتنی بر مجاورت کاهش می یابد و استفاده از تکنیک های تعبیه گذاری گراف به منظور کاهش ابعاد و حفظ ساختار ضروری می شود. این فرآیند به بهبود عملکرد در کاربردهایی مانند دسته بندی گره ها و پیش بینی پیوندها کمک می کند. اما روش های سنتی تعبیه گذاری گراف در ثبت روابط غیرخطی و مقیاس پذیری برای شبکه های بزرگ با محدودیت هایی مواجه هستند. همچنین، در داده های دنیای واقعی، ویژگی های اولیه و دقیق گره ها که برای این الگوریتم ها ضروری است، همیشه در دسترس نیست.در این مقاله، چارچوب جدیدی به نام FuzzyRandomNet ارائه شده است که با ترکیب منطق فازی و گام های تصادفی، این چالش ها را برطرف می سازد. FuzzyRandomNet با افزودن لایه های غیرخطی و بهینه سازی ویژگی های گره، راه حل هایی کارآمدتر و مقیاس پذیرتر برای یادگیری گراف ها ارائه می دهد. نتایج ارزیابی روش پیشنهادی در مقایسه با تکنیک های موجود بر روی مجموعه داده های استاندارد نشان می دهد که این روش عملکرد بهتری در دسته بندی گره ها و پیش بینی پیوندها داشته و دقت و انعطاف پذیری بالاتری در شبکه های بزرگ و پیچیده از خود نشان می دهد

    کلید واژگان: کاهش ابعاد گراف، یادگیری عمیق، منطق فازی، گام های تصادفی، تعبیه گذاری گراف
    Mohammadmehdi Keikha *, Saman Barahouei

    Graph structures play a vital role in modeling relationships across various domains, including social networks, knowledge bases, and biological networks. As the dimensions of these networks grow, the efficiency of proximity-based analysis methods declines, necessitating the use of graph embedding techniques to reduce dimensionality while preserving the underlying structure. This process enhances performance in applications such as node classification and link prediction. However, traditional graph embedding methods face challenges with capturing non-linear relationships and scaling to large networks. Additionally, in real-world networks, the essential initial and precise node features which are required by these algorithms are not always available. In this paper, we propose a novel framework called FuzzyRandomNet, which addresses these challenges by integrating fuzzy logic with random walks. FuzzyRandomNet introduces non-linear layers and optimizes node features to provide more efficient and scalable solutions for graph representation learning. The evaluation of the proposed method against existing techniques on standard datasets demonstrates superior performance in node classification and link prediction, exhibiting higher accuracy and flexibility in large and complex networks.

    Keywords: Graph Dimensionality Reduction, Deep Learning, Fuzzy Logic, Random Walks, Graph Embedding
  • شایسته طباطبائی *

    آفت سوسک سرخرطومی حنایی عامل ورود بیماری های باکتریایی و قارچی به نخل می باشد که در صورت مشاهده در مزارع، خسارت سنگینی به نخلستان ها وارد می کند. امروزه تحول در محیط ارتباطات بی سیم امکان توسعه گره های حسگر کم هزینه، کم مصرف، چند عملکردی و کوتاه برد جهت ردیابی این آفت در نخلستان را فراهم آورده است. در الگوریتم های ردیابی هدف موجود، با افزایش سرعت هدف، احتمال از دست دادن هدف نیز افزایش می یابد. بر این اساس در مقاله حاضر روش جدیدی برای ردیابی هدف پیشنهاد می شود که از دست دادن هدف را کاهش می دهد. از طرفی با توجه به محدودیت انرژی سطح باتری در گره های حسگر، نیازمند برنامه زمانی برای دوره خواب و بیداری حسگرها در راستای افزایش طول عمر شبکه هستیم. به منظور بهبود مصرف انرژی در این مقاله از رویکرد برنامه ریزی زمانی جهت تنظیم دوره خواب و بیداری گره ها با استفاده از الگوریتم بهینه سازی ازدحام گربه و منطق فازی استفاده شده است. از شبیه سازی روش پیشنهادی و مقایسه آن با روش Tracking-45-Degree-vectors در شبیه ساز Opnet می توان دریافت که پروتکل پیشنهادی عملکرد بسیار بهتری دارد، بطوریکه نرخ تاخیر انتها به انتها به میزان 02/27 درصد، نرخ تاخیر دسترسی به رسانه به میزان 01/2 درصد، نرخ گذردهی به میزان 62/0 درصد، نسبت سیگنال به نویز به میزان 28/3 درصد و میانگین انرژی مصرفی باتری به میزان 277/8 درصد نسبت به پروتکل Tracking-45-Degree-vectors بهبود یافته است. لازم به ذکر است الگوریتم پیشنهادی برای یک هدف شبیه سازی و تست شده است.

    کلید واژگان: خوشه بندی، مصرف انرژی، شبکه های حسگر بی سیم، الگوریتم بهینه سازی ازدحام گربه ها، منطق فازی، ردیابی هدف متحرک، سوسک سرخرطومی خرما.
    Shayesteh Tabatabaei*

    The Rhynchophorus ferrugineus is a major pest that serves as a carrier for bacterial and fungal diseases, causing significant damage to palm plantations when observed on farms. Nowadays, advancements in wireless communication environments have made it possible to develop low-cost, energy-efficient, multi-functional, and short-range sensor nodes for tracking this pest in palm plantations. In existing target tracking algorithms, the probability of losing the target increases with its speed. Therefore, this paper proposes a new method for target tracking that reduces the likelihood of losing the target. Additionally, considering the energy constraints of battery-powered sensor nodes, we need a scheduling mechanism for their sleep and wake-up cycles to enhance the network's lifespan. To improve energy consumption, this paper utilizes a time scheduling approach to adjust the sleep and wakeup periods of nodes using the Cat Swarm Optimization algorithm and Fuzzy Logic optimization. By simulating the proposed method and comparing it with the Tracking-45-Degree-vectors method in the Opnet simulator, it can be observed that the proposed protocol performs significantly better. Specifically, the end-to-end delay rate improves by 27.02%, the media access delay rate improves by 2.01%, the throughput rate improves by 0.62%, the signal-to-noise ratio improves by 3.28%, and the average battery energy consumption improves by 8.77% compared to the Tracking-45-Degree-vectors protocol. It is worth mentioning that the proposed algorithm has been simulated and tested for a single target scenario.

    Keywords: Clustering, Energy Consumption, WSN, Cat Swarm Optimization Algorithm, Fuzzy Logic, Target Tracking, Rhynchophorus Ferrugineus
  • Mohammadreza Zare Banadkouki *, Mohammad Mirabi

    The limitation of government resources, especially in the field of budget, for the development of infrastructure on the one hand and the possibility of defining multiple plans and projects on the other hand, makes the issue of prioritizing and choosing the best portfolio of feasible projects vital. The basic question is which projects should be done and how the projects will be managed. The model used to select the project portfolio should be realistic, capable, flexible, affordable, and simple. It is natural that the correct choice of the prioritization model and the selection of projects with the help of economic and non-economic criteria can help in the development of infrastructures as quickly as possible and in achieving the goals. In this research, we are trying to prioritize projects using the TOPSIS method and the innovative method of fuzzy group decision making. Among the main indicators identified in this research, we can mention financial indicators, technical indicators, risk indicators, environmental indicators and political-social indicators; Each of these indicators has sub-criteria. As a case study, we rated four dam construction projects using this decision-making method. The sensitivity analysis of the ranking based on changing the weights of the sub-criteria showed that the ranking has high robustness. The results show that this method can be used to select projects of the same type in other project portfolios.

    Keywords: Ranking Of Projects, Multi-Criteria Decision Making, Economic, Non-Economic Criteria, Fuzzy Logic, TOPSIS
  • * Foruzan Samandari, ABDOLNABI ANSARI ASL, Ali Barati

    Vehicular ad-hoc networks are a type of ad-hoc network that lacks a fixed infrastructure. The network's nodes are vehicles that self-organize and perform various network operations, including packet routing and network management. These networks enable intelligent autonomous behavior in vehicles, particularly in situations such as accidents. Each vehicle in a vehicular ad-hoc network acts as a network node, and these nodes can collaborate to enhance network efficiency. Nowadays, technologies like vehicular ad-hoc networks are widely employed to enhance traffic flow and transportation in urban areas. Routing in vehicular ad-hoc networks remains a fundamental challenge in these networks. This article presents a routing method specifically designed for vehicular ad-hoc networks operating in urban environments. Given that urban environments consist of numerous roads and intersections, the proposed approach is divided into three phases. The first phase introduces an intersection detection method that does not require a city map. It classifies the network nodes into two categories: those located at intersections and those outside intersections. The second phase presents a routing method for nodes outside intersections, while the third phase outlines a method for determining routes for nodes within intersections. To evaluate the performance of the proposed method, key parameters such as packet delivery ratio, routing overhead, throughput, and end-to-end delay have been analyzed. The results indicate that the proposed method outperforms other existing methods.

    Keywords: Vehicular Ad-Hoc Networks, Fuzzy Logic, Routing, Intersection
  • محمد بیرانوند، اصغر اکبری فرود*
    روش هایی متعدد برای تشخیص خطای ترانسفورماتورها وجود دارند، از جمله تجزیه و تحلیل گازهای محلول (Dissolved Gas Analysis-DGA) که به دو روش مرسوم و هوشمند انجام می شود. در این مقاله، روشی جدید مبتنی بر منطق فازی و با استفاده از 5 روش DGA (روش گاز کلیدی، روش نسبت دورنبرگ، روش نسبت راجرز، روش IEC و روش مثلث دووال) برای ارزیابی وضعیت ترانسفورماتورهای قدرت ارائه شده است. در ابتدا، سالم یا معیوب بودن ترانسفورماتور تشخیص داده می شود. این مرحله بر اساس روش های گاز کلیدی و روش نسبت دورنبرگ با رویکرد منطق فازی انجام می‏شود. سپس، در صورت تشخیص معیوب بودن ترانسفورماتور، با استفاده از روش های راجرز و IEC، نوع خطا تشخیص داده می شود و اگر تشخیص خطا توسط این دو روش به نتیجه‏ای یکسان رسید، تشخیص نوع خطا خاتمه می‏یابد و اگر نتیجه یکسان نبود، برای تشخیص نوع خطا از روش مثلث دووال با رویکرد منطق فازی استفاده می شود. الگوریتم ارائه‏شده بر روی 30 دستگاه ترانسفورماتور آزمون شده است و نتایج موید دقت زیاد آن (7/96 درصد) در تشخیص خطا است. در این مقاله، علاوه بر تشخیص نوع خطا، به محل خطا با استفاده از نسبت CO/CO2 و روش گاز کلیدی با رویکرد منطق فازی بررسی و تشخیص داده شده است.
    کلید واژگان: ترانسفورماتورهای قدرت، تشخیص خطا در ترانسفورماتور، روش تجزیه و تحلیل گازهای محلول، منطق فازی
    Mohamad Beiranvand, Asghar Akbari Froud *
    There are many methods to diagnose transformer faults, including dissolved gas analysis (DGA), done in two conventional and smart ways. This paper presents a new method based on fuzzy logic and 5 DGA methods (key gas method, Durenberg's ratio method, Rogerˊs ratio method, IEC method, and Duval triangle method) to evaluate the condition of power transformers. At first, it is determined whether the transformer is healthy or defective. This step is performed based on key gas methods and Durenberg's ratio method with a fuzzy logic approach. Then, if it is detected that the transformer is defective, the type of error is detected using Rogers and IEC methods. If the error detection by these two methods reaches the same result, the error type detection is terminated and if the result is not the same, the Duval triangle method with fuzzy logic approach is used to detect the error type. The presented algorithm has been tested on 30 transformer devices and the results confirm its high accuracy (96.7%) in fault detection. In this article, in addition to detecting the type of fault, the location of the fault has been investigated and diagnosed using the CO2/CO ratio and the key gas method with a fuzzy logic approach.
    Keywords: Power Transformers, Transformer Fault Detection, Dissolved Gas Analysis Method, Fuzzy Logic
  • زهرا سعیدی مبارکه، حسین عموزادخلیلی*
    این تحقیق به معرفی یک مدل بهینه سازی چندهدفه غیرخطی می پردازد که برای بهینه سازی هم زمان سود و رضایت مشتری در سیستم های تولیدی طراحی شده است. مساله مورد بررسی شامل بهینه سازی در شرایط پیچیده و نامطمئن تولید است که با محدودیت های منابع و زمان مواجه است. مدل پیشنهادی با به کارگیری توابع هدف غیرخطی و تحلیل دقیق شرایط عملیاتی، راه حل های بهینه ای را برای مدیران ارائه می دهد. این منطق فازی با الگوریتم های یادگیری ماشین نظیر شبکه های عصبی و یادگیری تقویتی ترکیب شده است تا مدلی هوشمند و انعطاف پذیر ایجاد شود که به طور موثری با تغییرات ناگهانی در محیط های پویا سازگار می شود. این مدل از ترکیب الگوریتم های ژنتیک مرتب سازی غیر مسلط چهارم (NSGA-IV) و شبکه انتخاب متغیر (VSN) در یک چارچوب ترکیبی بهره می برد و رویکردی پیشرفته و چندوجهی برای حل مسائل پیچیده بهینه سازی چندهدفه ارائه می کند. نتایج پارتو-بهینه حاصل از این مدل نشان دهنده عملکرد کارآمد و بهینه آن است. مدل پیشنهادی می تواند به عنوان منبعی عملی و راهبردی برای مدیران و تصمیم گیران در بهینه سازی تولید و ارتقاء رضایت مشتری در شرایط نامطمئن و پویا مورد استفاده قرار گیرد.
    کلید واژگان: بهینه سازی چندهدفه، منطق فازی، یادگیری ماشین، الگوریتم فرا ابتکاری ترکیبی چند هدفه
    Zahra Saeidi Mobarakeh, Hossein Amoozadkhalili *
    This research introduces a nonlinear multi-objective optimization model that is designed to simultaneously optimize profit and customer satisfaction in production systems. The investigated problem includes optimization in complex and uncertain conditions of production, which is faced with resource and time limitations. The proposed model provides optimal solutions for managers by using non-linear objective functions and detailed analysis of operating conditions. This fuzzy logic is combined with machine learning algorithms such as neural networks and reinforcement learning to create an intelligent and flexible model that effectively adapts to sudden changes in dynamic environments. This model uses the combination of non-dominant fourth sorting genetic algorithms (NSGA-IV) and variable selection network (VSN) in a hybrid framework and provides an advanced and multi-faceted approach to solving complex multi-objective optimization problems. Pareto-optimal results obtained from this model indicate its efficient and optimal performance. The proposed model can be used as a practical and strategic source for managers and decision makers in optimizing production and improving customer satisfaction in uncertain and dynamic conditions.
    Keywords: Multi-Objective Optimization, Fuzzy Logic, Machine Learning, Hybrid Multi-Objective Meta-Heuristic Algorithm
  • Raheel Jawad*, Rawaa Jawad

    Fire accidents are a disaster that can cause loss of life, property damage and permanent disability to the affected victim. Firefighting is a very important and dangerous job. Firefighters must extinguish the fire quickly and safely to prevent further damage and destruction. Detecting and extinguishing fires is a dangerous task that always puts the lives of firefighters at risk. One of the most effective tools for early fire extinguishing is the firefighting robot. Fire sensing in most industries is absolutely essential to prevent catastrophic losses. Robots with this type of embedded system can save the lives of engineers in industrial sites with hazardous conditions. This project aims to design and implement a solar-powered  with artificial intelligent of mobile fire detection robot to detect fires in disaster-prone areas and thus reduce human work effort and level of destruction. Design a robot capable of moving using a rotary motor, finding a flame using a flame sensor, and extinguishing a fire using a water spray using a pump, all of which is controlled by an Arduino Uno microcontroller and programmed using an artificial intelligence (fuzzy) logic technology) using MATLAB, the inputs It has two variations:: flame and gas with three organic functions, each of which has a gas variable (low, medium, high), flame sensor (small, normal, large), and the output is a pump, (pump off , pump on ) with 9 rules. In addition to the experimental setup of the proposed system which demonstrates the performance of sensors (gas, flame) using fuzzy and implemented logic tools. The performance of the solar panels was first tested using MATLAB software as well as experimentally under different weather conditions. The pump's performance is being tested experimentally, and the robot is also being tested to detect and extinguish fires. The process of designing and implementing robotics involves creating mechanical and electrical systems. The results showed the effect of temperature change on the solar panel, as when it increases, the panel’s production capacity decreases, as well as the effect of decreased solar radiation resulting from clouds and other things, and the extent of its effect. Impact on the performance efficiency of solar panels, and observing the pump performance in terms of flow rate and height. Hence, it can be noted that the robot designed in the project is capable of discovering fire sources and extinguishing them using fire-fighting systems equipped with a water tank and a controllable pump to spray the water necessary for the process. From this study, can be concluded that the designed model is able to work according to its initial design  with artificial intelligence  with the least amount of errors, and therefore it can be applied in industrial applications, avoiding fire damage and extinguishing it when it occurs for the first time.

    Keywords: Robot, Solar Cell, Fire, Detection, Flame Sensor, Fuzzy Logic
  • Saman Darvish Kermani, Ali Morsagh Dezfuli *, Abdolreza Behvandi, Mehrdad Kankanan
    The Power Quality (PQ) issue refers to the occurrence of irregular voltage, current, or frequency that leads to failure or incorrect functioning of equipment used by end users. The PQ meter is utilized to monitor a diverse range of power supply characteristics, all of which possess the capacity to impact the effectiveness of both operational procedures and machinery. The dynamic voltage restorer (DVR) performs the role of a specialized power device employed to mitigate the voltage drop experienced at the terminal of a sensitive load. DVR can be controlled by various control designs. This work conducts a comparative analysis on a normally managed voltage system and a medium-power DVR controlled by a neural network (NN), fuzzy logic (FL), or adaptive neuro-fuzzy inference system (ANFIS) by utilizing an output voltage regulator. The identification and rapid compensation of voltage perturbations, such as voltage sag, are essential elements in monitoring and controlling DVRs. The conventional PI controller is commonly employed in regulating DVRs. While the traditional controller possesses certain merits, it is not free of limitations. One such downside pertains to its utilization of constant gains, which can impede its capability to provide optimal control performance in instances where system parameters undergo fluctuations. Possible solutions have been proposed to effectively tackle this issue, such as the use of NNs, FL, or ANFIS controllers. Furthermore, to attain both rapid dynamic response and robustness, a modified d-q converted three-phase voltage regulator was adopted. Instead of employing a conventional three-phase regulator, this particular regulator is operated by means of an NN, FL, ANFIS, or PI controller. The suggested voltage regulator offers a prompt solution for rectifying voltage irregularities, such as voltage sag, by promptly restoring the voltage to the nominal magnitude. The primary source of power adopted in this study is a wind turbine unit.
    Keywords: Dynamic Voltage Restorer, Power Quality, Neural Network, Fuzzy Logic, Adaptive Neuro-Fuzzy Inference System, Voltage Sags, Voltage Swells
  • Azzedine Khati*

    In this research paper, a multivariable prediction control method based on direct vector control is applied to command the active power and reactive power of a doubly-fed induction generator used into a wind turbine system. To obtain high energy performance, the space vector modulation inverter based on fuzzy logic technique (fuzzy space vector modulation) is used to reduce stator currents harmonics and active power and reactive power ripples. Also the direct vector control model of the doubly-fed induction generator is required to ensure a decoupled control. Then its classic proportional integral regulators are replaced by the multivariable prediction controller in order to adjust the active and reactive power. So, in this work, we implement a new method of control for the doubly-fed induction generator energy. This method is carried out for the first time by combining the MPC strategy with artificial intelligence represented by Fuzzy SVM-based converter in order to overcome the drawbacks of other controllers used in renewable energies. The given simulation results using Matlab software show a good performance of the used strategy, particularly with regard to the quality of the energy supplied.

    Keywords: Doubly-Fed Induction Generator (DFIG), Fuzzy Logic, Multivariable Prediction Control (MPC), Space Vector Modulation (SVM), Direct Vector Control (DVC), Artificial Intelligent (AI)
  • ایمان محمدی*، محسن تقوی
    مصرف گاز به عنوان یکی از پرمصرف ترین حامل های انرژی در کشور، اهمیت بسزایی در مدیریت بحران، مدیریت تولید، تخصیص و مصرف، جلوگیری از هدر رفت و کاهش آلودگی های زیست محیطی دارد؛ اما به دلیل قدیمی بودن تجهیزات اندازه گیری، ثبت داده ها به صورت پیوسته امکان پذیر نیست و اطلاعات موجود درباره مصرف گاز، معمولا محدود به گزارش های مصرف دوره ای گاز مشترکین است؛ بنابراین، پیش بینی لحظه ای مصرف گاز با عدم قطعیت بالایی همراه است و بررسی صحت پیش بینی نیز به دلیل فقدان داده های واقعی لحظه ای امکان پذیر نیست. هدف این پژوهش، پیش بینی هوشمند مصرف گاز در فواصل زمانی سه ساعته بر اساس اطلاعات مصرف دوره ای آن است. روش ارائه شده در این پژوهش شامل سه گام است. در گام اول، با استفاده از الگوریتم خوشه بندی فازی، داده های مصرف گاز مشترکین خانگی به سه دسته کم مصرف، متعادل و پرمصرف تقسیم می شوند. در گام دوم، با استفاده از یک شبکه عصبی عمیق، دما به صورت بازه ای سه ساعته پیش بینی می شود. در گام سوم، با استفاده از یک سیستم مبتنی بر منطق فازی، مصرف سه ساعته گاز مشترکین خانگی بر اساس دمای پیش بینی شده، روز سال و ساعت شبانه روزی تخمین زده می شود. پیاده سازی روش پیشنهادی بر داده های شهر بیرجند نشان می دهد که مجموع مصرف لحظه ای پیش بینی شده برای هر سه خوشه کم مصرف، متعادل و پرمصرف، میانگین مصرف دوره ای مشترکین آن خوشه ها را با خطای قابل قبولی دنبال می کند. همچنین، وجود همبستگی منفی قوی بین دما و مصرف گاز، به ویژه برای مشترکین متعادل در فصول سرد، تاثیرپذیری مصرف گاز از دما را تایید می کند.
    کلید واژگان: مصرف دورهای گاز، پیش بینی هوشمند مصرف گاز، الگوریتم خوشه بندی، شبکه عصبی عمیق، منطق فازی
    Iman Mohammadi *, Mohsen Taghavi
    Gas consumption, as one of the most consumed energy carriers in the country, is very important in crisis management, production management, allocation and consumption, preventing wastage and reducing environmental pollution. However, due to the oldness of the measuring equipment, it is not possible to record data continuously, and the available information about gas consumption is usually limited to the periodic gas consumption reports of consumers. Therefore, real-time forecasting of gas consumption is associated with high uncertainty, and it is not possible to check the accuracy of the forecast due to the lack of real-time data. The aim of this research is to intelligently predict gas consumption in three-hour intervals based on its periodic consumption information. The method presented in this research includes three steps.In the first step, using the fuzzy clustering algorithm, the gas consumption data of household consumers are divided into three categories: low consumption, balanced and high consumption. In the second step, using a deep neural network, the temperature is predicted in three-hour intervals. In the third step, using a system based on fuzzy logic, the three-hour gas consumption of household consumers is estimated based on the predicted temperature, day of the year and time of day. The implementation of the proposed method on the data of the city of Birjand shows that the total instantaneous consumption predicted for all three low-consumption, balanced and high-consumption clusters follows the average periodic consumption of the consumers of those clusters with an acceptable error. Also, the presence of a strong negative correlation between temperature and gas consumption, especially for balanced consumers in cold seasons, confirms the influence of gas consumption on temperature.
    Keywords: Periodic Gas Consumption, Intelligent Prediction Of Gas Consumption, Clustering Algorithm, Deep Neural Network, Fuzzy Logic
  • حسین رشیدی گویا، همایون کتیبه*، امجد ملکی

    براساس مطالعات و مبانی موجود، زلزله باعث تغییر در سطح آب زیر زمینی می شود؛ ولی تا کنون مکانیسم تغییرات به درستی مشخص نشده است. یکی از اصلی ترین اهداف این پژوهش، تعیین عواملی است که به طور مستقیم و یا غیر مستقیم در شدت تغییرات سطح آب زیرزمینی پس از زمین لرزه موثر هستند. در این پژوهش برخی از عواملی که باعث افزایش یا کاهش سطح آب زیرزمینی آبخوان سرپل ذهاب پس از زمین لرزه 21 آبان 1396 شده اند؛ بررسی شده است. برای بررسی همبستگی بین عوامل کاهش دهنده و افزایش دهنده سطح آب زیرزمینی با تغییرات سطح آب زیرزمینی از روش رگرسیون خطی تک متغیره و چند متغیره استفاده شد. نتایج نشان دهنده همبستگی نسبتا زیاد مقدار RT (حاصلضرب مقاومت ویژه لایه اشباع در ضخامت زون اشباع) با افزایش سطح آب زیرزمینی است؛ بطوریکه ضریب همبستگی=0.70 r می باشد. همچنین عمق سطح آب زیرزمینی (WTD) با r=0.54 و محدوده کششی گسل امتداد لغز با r=0.48 بترتیب بیشترین همبستگی را با کاهش سطح آب زیرزمینی داشتند.

    کلید واژگان: سطح آب زیرزمینی، زمین لرزه، منطق فازی، آبخوان، سرپل ذهاب
    Hossein Rashidi Gooya, Homayoon Katibeh *, Amjad Maleki

    Based on existing studies, earthquakes cause changes in the groundwater levels; however, the mechanism of these changes has not been accurately identified so far. One of the main objectives of this research is to determine the factors which directly or indirectly influence the intensity of the groundwater level changes after an earthquake. In this research, some of the factors that caused the increase or decrease of the groundwater level of the Sarpol-e Zahab aquifer after the earthquake on November 12, 2017, have been investigated. Linear regression analysis was used to compare the correlation between the factors which decrease or increase the groundwater levels and the groundwater level changes. The results show relatively high correlation between the RT (resistivity of the saturated zone multiplied by the thickness of the saturated zone) values and the increase in groundwater levels with a correlation coefficient of r=0.70. Also, the water table depth (WTD) with r=0.54 and the extensional area caused by strike-slip fault with r=0.48 had the highest correlation with the decrease in groundwater levels.

    Keywords: Groundwater Level, Earthquake, Fuzzy Logic, Aquifer, Sarpol-E Zahab
  • Ramin Pabarja, Gholamreza Jamali *, Khodakaram Salimifard, Ahmad Ghorbanpur
    The Lean, Agile, Resilience, and Green (LARG) supply chains are more competitive than conventional ones. Evaluating its performance under current conditions and developing suitable strategies is crucial to enhance LARG. This study aims to create an assessment model for LARG in Iran's hospital medical equipment supply chain, especially in Hamadan. The Fuzzy Inference System (FIS) evaluates LARG across four dimensions: lean, agile, resilient, and green. Key indicators obtained from a comprehensive review of the literature and other published reports in the field of LARG were also confirmed by a focused group of experts in the medical equipment supply chain field. The findings indicate that the value LARG of the medical equipment supply chain is 0.787. Key indicators for the evaluation of LARG in the hospital medical equipment supply chain include reducing overall supply chain costs, optimizing inventory management, shortening supply chain development cycle time, increasing the introduction of new products, promoting information sharing among supply chain members, establishing flexible supply bases and sourcing, reducing fossil fuel consumption, and implementing waste management practices such as reuse and recycling of recyclable materials. This research provides managers with valuable insights into the current state of LARG and serves as a reference for formulating LARG strategies and practices. The study's results enable supply chain actors, particularly in Iran's Hamadan Province, to comprehend the key indicators for improving LARG performance in the hospital medical equipment supply chain. The proposed model can be adapted to other industries and service sectors by adjusting the indicators and assessing data availability.
    Keywords: Lean, Agile, Resilience, Green, LARG Supply Chain, Medical Equipment, Hospital, Fuzzy logic, Fuzzy Inference Systems
  • Maryam Raeisi Sarkhooni, Behnam Yazdankhoo, Mohammadreza Hairi Yazdi *, Farshid Najafi

    In a delayed master-slave teleoperation system, if the slave robot interacts with a delicate and sensitive environment, it is essential to control the slave-environment interactions. Variable impedance control has been proposed as a useful method for this aim in the literature. However, changing the impedance parameters based on the system requirements imposes a complex process in the controller design. To address this issue, we propose a variable impedance control strategy for the slave side, where the impedance variables are changed using fuzzy logic. This is carried out based on the environment destruction threshold—defined based on the contact force and the velocity of the slave robot—and system stability range. The proposed method is simulated in MATLAB’s Simulink considering telesurgery conditions and soft tissue environment under an unknown and varying time delay. Simulation results show that the proposed method maintains the velocity of the slave robot and the environment force in the desired interval and performs better in keeping the environment safe compared to the constant-coefficient impedance control.

    Keywords: Teleoperation, Time Delay, Variable Impedance Control, Absolute Stability, Fuzzy Logic
  • Reyhane Ghafari, Najme Mansouri *

    New technologies have emerged over the last few years, such as IoT and fog computing. IoT devices and the enormous amounts of data generated every minute have led to the vast growth of the Internet of Things (IoT). In order to meet the term "Data Never Sleeps", some IoT applications require real-time services and low bit latency. In order to provide quick processing, storage, and services, Cisco proposed fog computing as an extension of cloud computing. The traditional methods are not capable of addressing the complex scheduling scenarios of fog computing. In this paper, we introduce a novel Fuzzy Reinforcement Learning Scheduling algorithm (FRLS) that enhances schedule accuracy in dynamic computing environments. In order to optimize task scheduling, the FRLS algorithm integrates fuzzy logic with reinforcement learning. In order to prioritize critical tasks, fuzzy logic handles uncertainty and prioritizes tasks according to deadlines, sizes, and file sizes. Then, reinforcement learning schedules the prioritized tasks, continually adjusting to dynamic conditions to ensure the best resource allocation. In addition to improving overall system performance, this combination provides a robust framework that can address the complexity and variability of fog computing environments. FRLS is designed to minimize response time while adhering to resource and deadline constraints in fog-based applications. A comparison of FRLS with existing algorithms shows that it significantly improves load balancing, deadline satisfaction, response time, and waiting time. Combining reinforcement learning and fuzzy logic leads to an efficient scheduling solution. In addition, FRLS outperforms non-prioritized algorithms.

    Keywords: Fog Computing, Reinforcement Learning (RL), Fuzzy Logic, Scheduling, Internet Of Thing (Iot)
  • سید عظیم حسینی*، حسین ملکی طولابی

    امروزه، در بسیاری از کشورهای درحال توسعه، در راستای دستیابی به اهداف رشد و توسعه پایدار، نیازمند افزایش سرمایه گذاری در پروژه های زیربنایی می باشند. از طرفی، موفقیت کشورها در پروژه های زیربنایی و عمرانی ازجمله ویژگی های توسعه آنان به شمار می آید. در چند دهه اخیر، با ظهور خطوط سریع السیر، حمل ونقل ریلی شاهد پیشرفت ها و تحولات عمده ای بوده که ازجمله آن می توان به کاهش فاصله اعزام قطارها، افزایش ظرفیت و مهم تر از همه، افزایش سرعت قطارها اشاره نمود. نظر به ویژگی های خطوط سریع السیر و محدودیت ناوگان هوایی، اکثر کشورها استفاده از قطارهای سریع السیر را مطمئن ترین و به صرفه ترین روش جابه جایی یافته اند. برهمین اساس، هدف اصلی این تحقیق، بررسی و اولویت بندی سیستم های روسازی مناسب قطارهای سریع السیر می باشد. جهت تجزیه وتحلیل داده ها، ابتدا روش های مهم روسازی قطارهای سریع السیر، با استفاده از مطالعات کتابخانه ای شناسایی گردید و در فرآیند تحلیل، از نظرات خبرگان که شامل 3 کارفرما، 4 شرکت پیمانکاری، 4 شرکت مشاور و 11 استاد دانشگاه بود، بهره گرفته شد. در این پژوهش، تعداد 7 روش که بیشترین درجه تکرارپذیری را داشته اند، انتخاب گردید. در ادامه، جهت استفاده از روش DEMATEL فازی، هریک از روش ها امتیازدهی گردید و درنهایت تاثیرگذاری و تاثیرپذیری هریک از عوامل، مشخص گردید. نتایج تحقیق نشان می دهد که سیستم رهدا MRT (1B) به عنوان تاثیرپذیرترین عامل و روش طرح ساتو (5B) به عنوان تاثیرگذارترین گزینه جهت اجرای روسازی راه آهن سریع السیر، مطرح می باشد

    کلید واژگان: قطار سریع السیر، روسازی، توسعه پایدار، منطق فازی
    Seyed Azim Hosseini *, Hossein Maleki Toulabi

    Today, many developing countries are seeking to increase investment in infrastructure projects to achieve sustainable development. On the other hand, the countries' success in infrastructure and development projects is what constitutes their progress. In recent decades, with the development of high-speed lines, railway transportation has seen major developments, including reduced time of dispatching trains, increased capacity, and, most importantly, increased speed of trains. Considering high-speed lines and limited aerial fleet, most countries have begun to use high-speed trains as the most reliable and most cost-effective method of transportation. Accordingly, this study mainly aimed to examine and prioritize pavement systems suitable to high-speed trains. For data analysis, first, major high-speed train pavement system techniques were identified using library studies, while for the analysis process, experts, including 3 employers, 4 contractors, 4 consulting companies, and 11 academic professors, were interviewed. In this study, 7 most frequent techniques were selected. Then, using the fuzzy DEMATEL method, each of the techniques was scored, and finally, it was determined how each factor affected and was effective on the systems. The findings revealed that the Rheda MRT (B1) system was most affected, with the Studiengesellschaft Asphalt-Oberbau design (B5) method, most effective on the implementation of the high-speed railway pavement system.

    Keywords: High-Speed Train, Pavement, Sustainable Development, Fuzzy Logic
  • Moezodin Mazaheri Tirani, Mahdi Karbasian *, Hadi Shirouyehzad

    Outsourcing is a key strategy in many industries and service sectors and businesses. Choosing the right outsourcing subject can boost productivity while choosing the wrong one can cause problems. Thus, a scientific model to support outsourcing decisions is needed. Especially, a specific model for the service sectors and businesses. We aim to make a comprehensive model to rank outsourcing options in the service sectors and businesses. This model covers different fields and can be used universally. We used a comprehensive library study, a questionnaire, and the CVR analysis to find and validate outsourcing decision indicators, these comprehensive indicators are one of the advantages of this article. Then, we used Kano’s model to divide them into functional and basic categories for better analysis. Next, we used the fuzzy best-worst model to weigh the indicators. Finally, we used the fuzzy WASPAS model to rank the outsourcing options. We applied the model to a case study at a Hospital as a service business unit. We considered and evaluated and ranked four sectors for outsourcing: "Restaurant", "Pharmacy", "Maintenance and Repair" and "Finance and Accounting".

    Keywords: Service-Outsourcing, DSS Model, WASPAS, BWM, Fuzzy Logic
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال