به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

gray wolf optimization algorithm

در نشریات گروه فنی و مهندسی
  • سیدمصطفی موسوی، علیرضا طلوعی*
    این مقاله، روش طراحی کنترل کننده درسه کانال حرکتی ربات پرنده با استفاده از الگوریتم های بهینه سازی کرم شب تاب و گرگ خاکستری، را مطرح می کند که توانایی مقابله با نامعینی های مدل سامانه را داراست. ابتدا الگوریتم کرم شب تاب به منظور بهبود عملکرد کنترل کننده مطرح شده استفاده شده و با استفاده از تغییرات تصادفی جهت بهینه سازی پارامترهای کنترل کننده، به یافتن حل بهینه مطلق نزدیک به جواب مطلوب کمک می کند. سپس، الگوریتم گرگ خاکستری نیز به منظور بهبود عملکرد کنترلر مورد استفاده قرارگرفته است. این الگوریتم نیز با تکیه بر الهام از رفتار گروهی گرگ ها در جستجوی غذا، به بهینه سازی پارامترهای کنترل کننده می پردازد. نوآوری این مقاله، ارضاء قیود کنترلر است که به علت محدود بودن بازه جستجو و ایجاد همسایگی تصادفی در ناحیه ای که قیود و محدودیت ها را ارضاء می کند، اعمال می شود. نتایج نشان می دهد که کنترلر طراحی شده با استفاده از الگوریتم کرم شب تاب به جهت استفاده از یک عامل تطبیقی پویا برای متعادل کردن نرخ همگرایی و توانایی جستجوی بهینه مطلق با تنظیم سرعت جستجو در طول فرآیند عملکرد دقیق تری از خود نشان می دهد. این روش می تواند بهبود قابل توجهی در عملکرد و پایداری ربات های پرنده ایجاد کند و در طراحی کنترل کننده در ربات های پرنده مورد استفاده قرار گیرد.
    کلید واژگان: ربات پرنده، کانال چرخ، کانال فراز، کانال سمت، الگوریتم های بهینه سازی کرم شب تاب و گرگ خاکستری
    Sayedmostafa Mousavi, Alireza Toloei *
    This article presents a controller design method for three-channel flight control of a flying robot using firefly and gray wolf optimization algorithms, both capable of handling system model uncertainties. First, the firefly algorithm enhances controller performance by introducing random variations to optimize parameters and approach the global optimum. Then, the gray wolf algorithm is employed to further improve controller efficiency by mimicking the group hunting behavior of wolves to guide parameter tuning. The main innovation of this study is satisfying controller constraints through a limited search interval and generating a random neighborhood within the feasible region. Results show that using a dynamic adaptive factor to adjust the search speed during optimization, the firefly-based controller achieves a better balance between convergence rate and global search ability. This method significantly improves the stability and performance of flying robots and can be effectively applied to controller design in aerial robotic systems.
    Keywords: Flying Robot, Roll Channel, Pitch Channel, Yaw Channel, Firefly Optimization Algorithm, Gray Wolf Optimization Algorithm
  • بیژن مرادی، مهران خلج*، علی تقی زاده هرات

    از آنجا که در شرکتهای مخابرات همراه،هزینه حفظ مشتریان فعلی بسیار کمتر از هزینه جذب مشتریان جدید است، پیش بینی دقیق امکان ریزش هر یک از مشتریان و جلوگیری از آن امری ضروری می باشد. بنابراین، پژوهشگران روش های کارآمدی را با استفاده از ابزارهای داده کاوی و هوش مصنوعی برای شناسایی مشتریانی که قصد رویگردانی دارند ارائه کرده اند. در این مقاله، ما به منظور بهبود فرآیند پیش بینی ریزش مشتری، یک راهکار موثر مبتنی بر یادگیری جمعی را پیشنهاد می کنیم که در آن از الگوریتم بهینه سازی گرگ خاکستری، به منظور انتخاب ویژگی های موثر و همچنین تنظیم پارامترهای آزاد مدل پیشنهادی، استفاده شده است. سپس، به منظور ارزیابی عملکرد روش پیشنهادی، آن را با استفاده از مجموعه داده IBM Telco شبیه سازی کرده و نتایج حاصل را به کمک معیارهای ارزیابی متداول شامل صحت، دقت، یادآوری، امتیاز F1 و AUC باسایر روش های مشابه مقایسه کرده ایم.نتایج بدست آمده برتری روش پیشنهادی بر سایر راهکارهای ارزیابی شده را نشان می دهد.

    کلید واژگان: پیش بینی ریزش مشتری، مخابرات همراه، یادگیری جمعی، هوش ازدحامی، الگوریتم بهینه سازی گرگ خاکستری
    Bijan Moradi, Mehran Khalaj*, Ali Taghizadeh Harat

    In today’s competitive world, companies need to analyze, identify and predict the behaviorof their customers and respond to their demands earlier than their competitors. Moreover, in manyindustries such as mobile telecommunications, the cost of maintaining existingcustomers (customer retention)is much lower than the cost of attracting a new customer. Therefore,the problem of identifying customers who are going to leave the company, so-called Customer Churn Prediction (CCP),and preventing themby offering Incentivesis essential in these industries. In this direction, researchers have presentedefficient methods using data mining and artificial intelligence tools to identify potentialchurners. In order to improve the process of predicting customer churn, in this paper we propose a novelensemble learningbased approach, in which the Gray Wolf Optimization(GWO) algorithm is utilized to select the effective features and also adjust the hyper-parameters in the proposed model. We have implemented our proposed model using Python and simulated it on the IBM Telco dataset to evaluate itsperformanceand compared the obtained results with existingmethods using common evaluation criteria including accuracy, precision, recall,and AUC. The experimentalresults show the superiority of the proposed method over other evaluated solutions.

    Keywords: Customer Churn Prediction, Mobile Telecommunication, Ensemble Learning, Swarm Intelligence, Gray Wolf Optimization Algorithm
  • مهدی باقری، رضا اسلامی*

    توان راکتیو مزایای بی شماری برای سیستم های قدرت دارد که به این مزایا، سرویس های فرعی توان راکتیو گفته می شود. یکی از این سرویس ها کنترل ولتاژ شینه ها می باشد. هدف اصلی این مقاله یافتن قیمت مناسب برای توان راکتیو و قراردادن ولتاژ شینه ها در محدوده موردنظر و درنظرگرفتن مقدار مناسبی از توان راکتیو در شینه های تولید به عنوان رزرو برای پشتیبانی های فنی و ولتاژی در سیستم قدرت، به صورت هم زمان می باشد. مطالعه پیشنهادی بر روی یک سیستم توزیع شعاعی 33 شینه پیاده سازی شده و جهت انجام بهینه سازی توابع هدف، از الگوریتم بهینه سازی گرگ خاکستری استفاده شده است. همچنین فرض شده است که میزان بارگذاری سیستم قدرت در طول 24 ساعت تغییر می کند و در برخی از شینه های این شبکه توزیع ژنراتور قرار داده شده است. نتایج شبیه سازی بیانگر این هست که با اعمال روش پیشنهادی، نه تنها هزینه توان راکتیو کمینه می گردد، بلکه مقدار مناسبی از توان راکتیو نیز در شینه های تولید ذخیره می شود و انحرافات ولتاژ شینه ها نیز کمینه می گردد.

    کلید واژگان: بازار توان راکتیو، توان راکتیو رزرو، بهینه سازی، تنظیم ولتاژ، الگوریتم بهینه سازی گرگ خاکستری
    Mahdi Bagheri, Reza Eslami*

    Reactive power has countless benefits for power systems, which are called reactive power sub-services. One of these services is voltage control. The main goals in this research are to find the suitable price for reactive power and set the voltage of the buses in the allowed range and at the same time consider the suitable amount of reactive power in the generation buses as a reserve for technical and voltage support in the power system. In order to optimize the objective functions, the gray wolf optimization algorithm has been used and 33 bus radial distribution system has been considered and it has been assumed that the load of the power system changes during 24 hours and it is assumed that in this distribution network, generators are placed in some buses. The simulation results show that in addition to the cost of reactive power being minimized, a suitable amount of reactive power is also stored in the generation buses and the voltage deviations of the buses are also minimized.

    Keywords: Reactive power market, reserve reactive power, optimization, voltage regulation, gray wolf optimization algorithm
  • عرفان خسرویان چم پیری*
    امروزه به دلیل کاربردهای متنوع و عملیاتی وسایل پرنده بدون سرنشین در زمینه های گوناگون، ازجمله نظارت، بازرسی، امداد و نجات و سایر زمینه ها، محققان بسیاری در سرتاسر جهان مشتاق مطالعه و تحقیق پیرامون این پرنده ها شده اند. کنترل برای حفظ موقعیت، حفظ وضعیت و تعقیب مسیر این دسته از پرنده ها، با توجه به گستردگی دامنه کاربردی از اهمیت بالایی برخوردار است. لذا در این پژوهش به بحث و حل مسیله مذکور پرداخته شده است. بدین منظور در ابتدای امر بر مبنای روش نیوتن اویلر به معرفی ساختار و بیان مدلی جهت آنالیز رفتار سیستم و طراحی کنترل کننده پرداخته شده است. ازآن جهت که دینامیک پرنده مورد بررسی غیرخطی بوده و در واقعیت برای مدل سازی از ساده سازی هایی استفاده می شود از الگوریتم کنترل بهینه تطبیقی برای حل مسیله موردنظر بهره گرفته شده به نحوی که پارامترهای کنترلی در صورت لزوم و بسته به شرایط قابلیت به روزرسانی داشته باشد که برای فرایند به روزرسانی پارامترهای کنترلی می توان از روش هایی نظیر بهینه سازی، فازی، شبکه عصبی و یا روش های ترکیبی نظیر فازی عصبی و غیره بهره برد. از سویی باید اشاره داشت که روش های نظیر فازی، یا شبکه عصبی قابلیت اعمال محدودیت نظیر محدودیت های فیزیکی عملگرها و غیره در فرایند به روزرسانی را نداشته ولی دارای سرعت جواب دهی بالاتری نسبت به روش های بهینه سازی می باشند. روش های بهینه سازی دارای توانایی بیشتر در یافتن پاسخ های بهتر و قابل قبول تر نسبت به روش های فوق الذکر هستند؛ اما باید اشاره داشت که به پردازنده های قوی با سرعت پردازش بالا نیاز دارند. با توجه به این که هدف این مقاله دست یابی به پاسخ های بهتر برای مانور حفظ موقعیت و تعقیب مسیر می باشد از الگوریتم بهینه سازی گرگ های خاکستری برای به روزرسانی پارامترهای کنترلی بهره گرفته شده است. همچنین به منظور افزایش مقاومت کنترل کننده و بهینه کردن تلاش کنترلی، پیشنهاد شده تا ورودی کنترلی با روش های دیگر نظیر pid غیرخطی بهینه ترکیب گردد. پس از بیان روابط، نتایج حاصل از شبیه سازی های صورت گرفته ارایه شده است. نتایج حاصل از شبیه سازی نشان می دهد رویکرد پیشنهادی به خوبی توانسته کلیه نیازها و اهداف مسیله را پاسخ دهد و می توان از آن در مسیله تعقیب مسیر و حفظ موقعیت بهره گرفت.
    کلید واژگان: تعقیب مسیر و حفظ موقعیت، کوادروتور، کنترل تطبیقی، الگوریتم بهینه سازی گرگ های خاکستری
    Erfan Khosravian Cham Piri *
    Nowadays, various applications of quadrotors, in different fields such as monitoring, inspection, and rescue has attracted the attention of many researchers. Because of the extensive range of applications for quadrotors, maintaining their position control, condition control, and tracking is important. Thus, it is essential that these issues are considered and resolved. Therefore, based on Newton Euler’s method, structure of a model for analyzing the behavior of the system and design of the controller is introduced in the present research. As the dynamics of quadrotors are nonlinear, the adaptive optimal control algorithm for resolving this issue was used in order for the control parameters to be updated. For updating these control parameters, methods such as optimizing, fuzzy, neural networks and hybrid methods can be used. The fuzzy or neural networks methods do not have the capability of applying constraints such as the operator’s physical restrictions in the updating process. Their overall response speed is greater than the optimization methods. The optimization methods have more capabilities to find better and more acceptable responses than the above methods, but it is noteworthy that they require high-speed processors. Since the objective was to achieve better responses for station keeping and tracking maneuvers, the gray wolf optimization algorithm for updating the control parameters was utilized. In addition, to increase the resistance of the controllers and to optimize the control efforts, the authors proposed to combine the control inputs with other methods such as optimal nonlinear proportional–integral–derivative (pid). Finally, the results of simulations were presented. The results demonstrated that the proposed approach resolved all aspects of the main problem. additionally, the proposed approach can be used in maintaining position control, condition control and tracking.
    Keywords: Trajectory tracking, station keeping, Quadrotor, Adaptive control, gray wolf optimization algorithm
  • M. Safari *, A.H. Rabiee, V. Tahmasbi
    For the Resistance Spot Welding (RSW) process, the effects of Welding Current (WC), Electrode Force (EF), Welding Cycle (WCY), and Cooling Cycle (CCY) on the Tensile-Shear Strength (TSS) of the joints have been experimentally investigated. An Adaptive Neural-Fuzzy Inference System (ANFIS) based on data taken from the test results were developed for modelling and predicting of TSS of welds. Optimal parameters of ANFIS system were extracted by Gray Wolf Optimization (GWO) algorithm. The results show that ANFIS network can successfully predict the TSS of RSW welded joints. It can be concluded that the coefficient of determination and mean absolute percentage error for the test section data is 0.97 and 2.45% respectively, which indicates the high accuracy of the final model in approximating the desired outputs of the process. After modeling with ANFIS-GWO, the effect of each input parameter on TSS of the joints was quantitatively measured using Sobol sensitivity analysis method. The results show that increasing in WC, WCY, EF, and CCY leads to an increase in TSS of joints.
    Keywords: Resistance spot welding, Adaptive neural-fuzzy inference system, Gray wolf optimization algorithm, Sobol sensitivity analysis method, AISI 304 steel
  • Fatemeh Heydari Pirbasti, Mahmoud Modiri, Kiamars Fathi-Hafshejani, Alireza Rashidi-Komijan

    With the expansion of human activities, the volume of waste and hazardous waste produced has increased dramatically. Increasing the volume of waste has created challenges such as transportation hazards, cleanup, disposal, energy consumption, and most impor tant environmental problems. The difficulty of unsafe waste control is one of the critical studies topics. Finding the o ptimal location of hazardous waste disposal is one of the issues that, if done properly, can significantly reduce the aforementioned challenges. The increasing volume of information, the complexity of multivariate decision criteria, have led to the lack of conventional methods for finding the optimal location. Machine learning methods have proven to be effective and superior in many areas. In this paper, a new method based on machine learning for finding the optimal location of hazardous waste disposal is p resented . In the proposed method, after applying clustering in the separation of the desired areas, the gray wolf algorithm optimization is used to find the optimal location of waste disposal . In order to apply the gray wolf optimization algorithm, a multi variate target function is defined . Cluster centers as were chosen as location of waste disposal . Proposed method is performed on collected data from the study area in Iran, Tehran province . Proposed clustering method is evaluated and compared withs some metaheuristics algorithm. The simulation results of the proposed method show cost reduction in finding the desired locations compared to similar researches . Also, Xi and Separation index used for evaluation of proposed clustering method to select the best location. The number of best locations using Xi and Separation index claim the superiority of the proposed method

    Keywords: Waste Disposal, Machine Learning, Clustering, Gray Wolf Optimization Algorithm, Objective Function
  • Neda Nikakhtar, Shahram Saeidi *
    The Cellular Manufacturing System (CMS) is one of the most efficient systems for production environments with high volume and product variety which takes advantage of group technology. In the cellular production system, similar parts called part families are assigned to a production cell having similar production methods, and the needed machines are dedicated to cells. Determining part families and allocating the necessary machines to the production cell is known as the Cell Formation Problem (CFP) which is known as an NP-Hard problem. Safaei and Tavakkoli-Moghaddam (2009a) proposed a model that is widely used in literature which suffers some killer weaknesses highly affecting subsequent researches. In this paper, the mentioned model is modified and revised to fix these major issues.  Besides, due to the NP-Hard nature of the problem, a meta-heuristic algorithm based on Gray Wolf Optimization (GWO) approach is also developed for solving the revised model on the sample examples and the results are compared. Simulation results indicated that the proposed method can reduce the total cost of the manufacturing system by 3% in comparison with the base model. Furthermore, simulation results of five sample problems indicate the better performance of the proposed method comparing with Lingo and PSO.
    Keywords: Cellular Manufacturing Systems, cell formation problem, gray wolf optimization algorithm, PSO
  • Hamidreza Seifi *, Kaveh Mohammad Cyrus, Naser Shams Gharneh
    This research aims to enhance intelligence integration in small-medium enterprises. The approach is included an integrated structural model and an optimal human resource allocation (HRA) using a novel intelligence method. To optimize the current organizational structure used enterprise engineering (EE) in IT and Business parts (Using ITIL and COBIT standards, BSC and KAP model, respectively), and statistics method like as regression test is used. Also, continuous HRA is simulated using HRA mathematical program, Gray Wolf Optimization Algorithm (GWO), and Sugeno Fuzzy Inference (SFI) model to add a self-regulating attribute to the GWO algorithm. Results showed that the EE was issued a new optimal and integrated structure in IT and business parts and the examination of the PMBOK approved it, too. Also, results of the novel self-regulating algorithm using data from previous researches and by the top five proposed methods in the researches (Includes: SGA, PRS, SRS, MIP, HM) based on three methods of evaluating the quality of solutions (GA-FSGS, MP-FSGS, GA-SGS) showed that increase of Ω from 15,000 to 25,000. Also, it showed that HM and SGA performed better than other previous cases even in the larger B100 and B200 datasets.
    Keywords: Intelligence Integration, Enterprise Engineering, Human Resource Allocation Sugeno, Fuzzy Inference, Gray Wolf Optimization Algorithm
  • Mehdi Safari *, AmirHossein Rabiee, Vahid Tahmasbi

    Resistance spot welding process of AISI 1060 steel has been experimentally investigated by studying the effects of welding current, electrode force, welding cycle and cooling cycle on tensile-shear strength. Using the response surface methodology, experimental tests are performed. An adaptive neural-fuzzy inference system is applied to model and predict the behavior of tensile-shear strength. Additionally, the optimal parameters of adaptive neural-fuzzy inference systems are obtained by the gray wolf optimization algorithm. For modeling the process behavior, the results of experiments have been employed for training (70% of data) and testing (30% of data) of the inference system. The results show that the applied network has been very successful in predicting the tensile-shear strength and the coefficient of determination and mean absolute percentage error for the test section data are 0.96 and 6.02%, respectively. This indicates the considerable accuracy of the employed model in the approximation of the desired outputs. After that, the effect of each input parameter on tensile-shear strength is quantitatively evaluated with the Sobol sensitivity analysis method. The results show that the tensile-shear strength of the joint rises by increasing the welding current and welding cycle and also decreasing the electrode force and cooling cycle.

    Keywords: Resistance spot welding, AISI 1060 steel, Adaptive neural-fuzzy inference system, Gray wolf optimization algorithm, Sobol sensitivity analysis method
  • Alireza Donyaii, Amirpouya Sarraf *, Hassan Ahmadi
    In this study, the performance of the algorithms of whale, Differential evolutionary, crow search, and Gray Wolf optimization were evaluated to operate the Golestan Dam reservoir with the objective function of meeting downstream water needs. Also, after defining the objective function and its constraints, the convergence degree of the algorithms was compared with each other and with the absolute optimal values obtained from GAMS nonlinear programming method (19.41). These values together with each algorithm optimization results were ranked using six multi-criteria decision-making methods of TOPSIS, VICOR, Linmap, Codas, ELECTRE and Simple Additive Weighting after obtaining the performance evaluation criteria of each algorithm (Reliability, reversibility, and vulnerability). Finally, integration methods (Mean, Borda, and Copland techniques) were used to evaluate the performance of decision models. The results showed that the mean responses of the gray wolf, the whale, differential evolutionary, and crow search algorithms were 1.08, 1.49, 1.29 and 1.19 times the absolute optimal response and the answers’ coefficient of variation obtained by Gray Wolf algorithm was 113.2, and 1.43 times smaller than the whale, differential evolutionary, and crow search algorithms, respectively. Moreover, all integration techniques indicated the superiority of the gray wolf algorithm. Then, the Crow search, Differential evolutionary, and whale algorithms were ranked second to fourth, respectively. On the other hand, the use of these methods in solving the problem of Golestan Dam reservoir optimization was considered appropriate due to the similarity of the results obtained from the integration techniques with the results of TOPSIS, VICOR and Linmap methods.
    Keywords: Optimal use of dam reservoir, Whale optimization algorithm, Differential evolutionary optimization algorithm, Crow search optimization algorithm, Gray wolf optimization algorithm
  • Majid Moazzami, Sayed Jamal al, Din Hosseini, Hossein Shahinzadeh, Jalal Moradi
    Recently, the renewable resources such as wind farms assumed more attraction due to their features of being clean, no dependency to any type of fuel and having a low marginal cost. The output power of wind units is dependent on the wind speed which has a volatile and intermittent nature. This fact confronts the solution of unit commitment problem with some challenges when a huge amount of wind resources are penetrated and considerable uncertainties are included in the problem. Moreover, the demand of system has some volatility in comparison with forecasted values. This kind of volatility and stochastic nature is another source of uncertainty in power system. In this paper, thermal and wind units are incorporated and the optimization problem is solved by the employment of proper probability distribution function and Monte Carlo simulation approach for dealing with uncertainties. Afterwards, the optimization problem is solved by the use of the binary form of gray wolf optimization algorithm and the minimized total cost will be obtained. Ultimately, the unit commitment schedule and optimal generation of each unit are determined and the optimization results are compared with the solution of genetic algorithm and particle swarm algorithm.
    Keywords: Security-constrained unit commitment, Wind power plant, Gray wolf optimization algorithm, Uncertainty, Monte-Carlo
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال