metaheuristic algorithms
در نشریات گروه فنی و مهندسی-
هدف
با رشد سریع صنعت فناوری مالی (فین تک) ، تبلیغات دیجیتال به یکی از ابزارهای کلیدی برای جذب مشتریان جدید و افزایش وفاداری مشتریان فعلی تبدیل شده است. در محیطی که عدم اطمینان و پیچیدگی های تصمیم گیری نقش مهمی ایفا می کند، استفاده از الگوریتم های فرا ابتکاری می تواند به بهینه سازی تبلیغات دیجیتال کمک کند.
روش شناسی پژوهشاین پژوهش با ارائه یک مدل سه سطحی در محیط فازی شهودی و بهره گیری از بازی استکلبرگ، تاثیر تبلیغات بر عملکرد، جذب و وفاداری مشتریان را بررسی می کند. در این مطالعه، فرآیند تبلیغات شرکت های فین تک به عنوان یک تصمیم گیری سه سطحی شامل جذب مشتریان، عملکرد تبلیغات و وفاداری مشتریان مدل سازی شده است. برای حل این مدل، از الگوریتم های ژنتیک و بهینه سازی ازدحام ذرات به منظور بهینه سازی استراتژی های تبلیغاتی استفاده شده است.
یافته هانتایج نشان داد که مدل پیشنهادی توانسته است با دقت بالایی میزان وفاداری مشتریان را پیش بینی کند و الگوریتم های فراابتکاری در بهینه سازی پارامترهای تبلیغاتی نقش موثری دارند. تحلیل نتایج نشان داد که نرخ تبدیل و میزان خرید مهم ترین عوامل تاثیر گذار بر وفاداری مشتریان هستند. همچنین، یافته ها نشان داد که استفاده از الگوریتم های ترکیبی می تواند به کاهش هزینه های تبلیغاتی و افزایش بازده سرمایه گذاری منجر شود. مقایسه نتیجه های الگوریتم های پیشنهادی نشان داد که روش ترکیبی ژنتیک و ازدحام ذرات نسبت به روش های مجزا، دقت بالاتری در پیش بینی رفتار مشتریان دارد.
اصالت/ارزش افزوده علمیبر اساس یافته های این پژوهش، پیشنهاد می شود شرکت های فناوری مالی از الگوریتم های فراابتکاری در بهینه سازی تبلیغات دیجیتال و هدف گذاری دقیق مشتریان استفاده کنند. این روش ها می توانند اثربخشی تبلیغات را افزایش داده، هزینه های بازاریابی را کاهش دهند و وفاداری مشتریان را در صنعت فین تک بهبود بخشند.
کلید واژگان: فناوری مالی، تبلیغات دیجیتال، الگوریتم های فرا ابتکاری، وفاداری مشتری، بهینه سازی تبلیغاتPurposeWith the rapid growth of the financial technology (FinTech) industry, digital advertising has become one of the key tools for attracting new customers and increasing the loyalty of existing ones. In an environment where uncertainty and decision-making complexities play a significant role, the use of metaheuristic algorithms can help optimize digital advertising efforts.
MethodologyThis study proposes a three-level model in an intuitionistic fuzzy environment and utilizes the Stackelberg game to examine the impact of advertising on performance, customer acquisition, and customer loyalty. In this study, the advertising process of FinTech companies is modeled as a three-level decision-making process encompassing customer acquisition, advertising performance, and customer loyalty. To solve this model, Genetic Algorithms (GA) and Particle Swarm Optimization (PSO) are employed to optimize advertising strategies.
FindingsThe results indicated that the proposed model accurately predicted customer loyalty and that metaheuristic algorithms effectively optimized advertising parameters. The analysis of the results showed that conversion rate and purchase amount are the most influential factors affecting customer loyalty. Furthermore, the findings revealed that using hybrid algorithms can lead to reduced advertising costs and increased return on investment (ROI). Comparing the proposed algorithms demonstrated that the hybrid approach, which combines genetic algorithms and particle swarm optimization, outperformed individual methods in predicting customer behavior.
Originality/ValueBased on the findings, it is recommended that FinTech companies adopt metaheuristic algorithms to optimize digital advertising and achieve precise customer targeting. These approaches can enhance advertising effectiveness, reduce marketing costs, and improve customer loyalty within the FinTech industry.
Keywords: Fintech, Digital Advertising, Metaheuristic Algorithms, Customer Loyalty, Advertising Optimization -
This paper introduces the Greedy Man Optimization Algorithm (GMOA), a novel bio-inspired metaheuristic approach for solving complex optimization problems. Inspired by competitive individuals resisting change, GMOA incorporates two unique mechanisms: MMO resistance, which prevents premature replacement of solutions, and periodic parasite removal, which promotes diversity and avoids stagnation. The algorithm is evaluated on standard benchmark functions, including Sphere, Rastrigin, Rosenbrock, and Griewank, and its performance is compared with established algorithms such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Differential Evolution (DE), and Ant Colony Optimization (ACO). Results demonstrate that GMOA outperforms these methods in terms of solution quality, convergence rate, and robustness. Statistical significance tests validate the reliability of the results. GMOA’s ability to balance exploration and exploitation makes it a promising tool for various real-world applications, including supply chain optimization and healthcare resource allocation.Keywords: Greedy Man Optimization Algorithm (GMOA), Bio-Inspired Optimization, MMO Resistance Mechanism, Metaheuristic Algorithms, Exploration-Exploitation Balance
-
International Journal of Optimization in Civil Engineering, Volume:15 Issue: 1, Winter 2025, PP 111 -130
Structural optimization plays a crucial role in engineering design, aiming to minimize weight and cost while satisfying performance constraints. This research presents a novel Self-Adaptive Enhanced Vibrating Particle System (SA-EVPS) algorithm that automatically adjusts algorithm parameters to improve optimization performance. The algorithm is applied to two challenging examples from the International Student Competition in Structural Optimization (ISCSO) benchmark suite: the 314-member truss structure (ISCSO_2018) and the 345-member truss structure (ISCSO_2021). Results demonstrate that SA-EVPS achieves significantly better solutions compared to previous studies using the Exponential Big Bang-Big Crunch (EBB-BC) algorithm. For ISCSO_2018, SA-EVPS achieved a minimum weight of 16543.57 kg compared to 17934.3 kg for the best EBB-BC variant—a 7.75% improvement. Similarly, for ISCSO_2021, SA-EVPS achieved 4292.71 kg versus 4399.0 kg for the best EBB-BC variant—a 2.42% improvement. The proposed algorithm also demonstrates superior convergence behavior and solution consistency, with coefficients of variation of 3.13% and 1.21% for the two benchmark problems, compared to 12.5% and 2.4% for the best EBB-BC variant. These results highlight the effectiveness of the SA-EVPS algorithm for solving complex structural optimization problems and demonstrate its potential for engineering applications.
Keywords: Structural Optimization, Metaheuristic Algorithms, Self-Adaptive Parameters, Vibrating Particle System, Truss Structures, ISCSO Benchmarks, Size Optimization, Parameter Tuning -
International Journal of Optimization in Civil Engineering, Volume:15 Issue: 1, Winter 2025, PP 15 -37
In this study, the Improved Material Generation Algorithm (IMGA) is proposed to optimize the shape and size of structures. The original Material Generation Algorithm (MGA) introduced an optimization model inspired by the high-level and fundamental characteristics of material chemistry, particularly the configuration of compounds and chemical reactions for generating new materials. MGA uses a Gaussian normal distribution to produce new combinations. To enhance MGA for adapting truss structures, a new technique called Random Chaotic (RC) is proposed. RC increases the speed of convergence and helps escape local optima. To validate the proposed method, several truss structures, including a 37-bar truss bridge, a 52-bar dome, a 72-bar truss, a 120-bar dome, and a 200-bar planar structure, are optimized under natural frequency constraints. Optimizing the shape and size of structures under natural frequency constraints is a significant challenge due to its complexity. Choosing the frequency as a constraint prevents resonance in the structure, which can lead to large deformations and structural failure. Reducing the vibration amplitude of the structure decreases tension and deflection. Consequently, the weight of the structure can be minimized while keeping the frequencies within the permissible range. To demonstrate the superiority of IMGA, its results are compared with those of other state-of-the-art metaheuristic methods. The results show that IMGA significantly improves both exploitation and exploration.
Keywords: Dynamic Constraint, Metaheuristic Algorithms, Truss Optimization, Soft Computing, Natural Frequency Constraints -
Accurate estimation of bond strength between concrete and deformed reinforcing bars is essential for the stability of reinforced concrete structures, especially in critical regions subjected to heavy loads and environmental stresses. Despite intensive experimental studies revealing the complexity of factors influencing bond strength, existing predictive models, often reliant on artificial neural networks, have limitations in accuracy due to constrained datasets and inadequate representation of real-world stress fields. In response, this study pioneers a novel hybrid metaheuristic-optimized neural network model to swiftly and precisely predict bond strength under tensile load. Utilizing a comprehensive dataset comprising 558 valid experimental outcomes, seven metaheuristic algorithms are employed to optimize the ANN architecture. These metaheuristic algorithms include the Weighted Mean of Vectors, Grey Wolf Optimizer, Energy Valley Optimizer, Circle Search Algorithm, Artificial Ecosystem-Augmented Optimization, War Strategy Optimization, and Brown-Bear Optimization Algorithm. Results demonstrate that the developed hybrid models, particularly the artificial neural networks optimized by the Weighted Mean of Vectors algorithm, exhibit superior predictive performance. This model also demonstrated the lowest miscalibration value, followed by Circle Search Algorithm and Energy Valley Optimizer, indicating a high level of reliability. Moreover, comparison with common analytical and empirical formulations revealed significant performance improvements of the proposed model, achieving a 25% reduction in MSE during the testing phase. Additionally, the Shapley Additive explanations and Sobol sensitivity analysis framework was used to interpret the proposed predictive model, highlighting key predictors such as cross-sectional area, development length or splice, reinforcing bar diameter, and concrete compressive strength.Keywords: Hybrid Predictive Models, Bond Strength Prediction, Metaheuristic Algorithms, Neural Network, Uncertainty Quantification, Model Interpretation
-
سازه های پایپرک به دلیل نقش کلیدی در انتقال سیالات، گازها و میعانات نفتی در پالایشگاه ها و واحدهای پتروشیمی، از اهمیت بالایی برخوردارند. با توجه به کاربرد وسیع این سازه ها در تاسیسات صنعتی، هزینه های ساخت آن ها بخش قابل توجهی از بودجه پروژه ها را به خود اختصاص می دهد. طراحی اقتصادی و البته ایمن این سازه ها به ویژه در صنایع نفت و گاز که با محدودیت های مالی همراه است، یک ضرورت حیاتی به شمار می رود. در زمینه ی طراحی بهینه ی این دسته از سازه ها تعداد محدودی مطالعه انجام گرفته است. تحقیق حاضر تلاش می کند تا با بهره گیری از الگوریتم فرا ابتکاری نهنگ، راهکاری عملی برای طراحی سازه هایی اقتصادی تر و ایمن ارائه دهد و از این طریق هزینه های ساخت و احداث پالایشگاه ها را به حداقل برساند. کارکرد طرح پیشنهادی بر روی یک پایپرک فولادی با رعایت نکات طراحی، ارزیابی شده است. نتایج نشان می دهد که روش بهینه سازی فراابتکاری نهنگ می تواند به عنوان یک ابزار کارآمد برای مهندسان، در دستیابی به طرح های اقتصادی، مورد استفاده قرار بگیرد.کلید واژگان: سازه پایپرک، سازه نگهدارنده لوله، الگوریتم های فراابتکاری، الگوریتم فراابتکاری نهنگ، بهینه سازیPipe racks are critical components in refineries and petrochemical plants, facilitating the transfer of fluids, gases, and petroleum condensates. As they are widely used in industrial installations, their construction costs represent a large portion of project budgets. Therefore, the economical yet safe design of pipe racks, particularly in the financially constrained oil and gas sector, is a critical imperative. Limited research has focused on the optimized design of these structures. This study presents a methodology employing the Whale Optimization Algorithm—a metaheuristic approach—to design cost-effective and safe pipe racks, thereby mitigating refinery construction and establishment costs. The proposed approach was evaluated on a steel pipe rack based on relevant design considerations. The findings demonstrate that the Whale Optimization Algorithm is an effective means for engineers to attain economical structural designs.Keywords: Pipe Rack, Pipe Rack Structure, Metaheuristic Algorithms, Whale Metaheuristic Algorithm, Optimization
-
The aim of the present study is to predict audit failure using metaheuristic algorithms in companies listed on the Tehran Stock Exchange. To achieve this objective, 1,848 firm-year observations (154 companies over 12 years) were collected from the annual financial reports of companies listed on the Tehran Stock Exchange during the period from 2011 to 2022. In this study, four metaheuristic algorithms (including Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), and Bee Colony Optimization (BCO)) were utilized, as well as two methods for selecting the final research variables (the two-sample t-test and the forward stepwise selection method) to create the model. The results from the metaheuristic algorithms indicate that the overall accuracy of the GA, PSO, ACO, and BCO algorithms is 95.3%, 94.5%, 90.6%, and 92.8%, respectively, demonstrating the superiority of the Genetic Algorithm (GA) compared to other metaheuristic algorithms. Furthermore, the overall results from the variable selection methods indicate the efficiency of the stepwise method. Therefore, in companies listed on the Tehran Stock Exchange, the stepwise method and the Genetic Algorithm (GA) provide the most efficient model for predicting audit failure.
Keywords: Audit Failure, Prediction, Metaheuristic Algorithms -
Journal of Industrial Engineering and Management Studies, Volume:11 Issue: 2, Summer-Autumn 2024, PP 45 -52Sudden and severe stock price crashes pose a significant challenge to stock markets. The substantial losses incurred from such events underscore the need for more effective forecasting tools. This study aims to enhance the predictive power of models for stock price crashes in Tehran Stock Exchange and commenced with a comprehensive literature review to identify key financial factors influencing stock price volatility. Given the high dimensionality of the dataset and the extended time period, metaheuristic algorithms were employed for feature selection. 10 algorithms, namely Ant Colony Optimization, Hill Climbing, Las Vegas, Whale Optimization, Simulated Annealing, Genetic Algorithm, Tabu Search, Particle Swarm Optimization (PSO), Honey Bee (HBA) and Firefly were utilized to reduce dimensionality and enhance model performance. Subsequently, Support Vector Machines were implemented to develop predictive models. The models were trained and evaluated using historical data from Tehran Stock Exchange spanning from 2001 to 2020. The findings of this research demonstrate that combining metaheuristic algorithms for model reduction and optimization, along with advanced machine learning techniques, yields results that can significantly improve investment decision-making.Keywords: Stock Price Crash, Metaheuristic Algorithms, Support Vector Machine (SVM), Stock Exchange
-
Nowadays, the project scheduling problem with limited resources has become one of the most important optimization issues. Given the enormous costs spent on projects as well as materials, resources, and forces, projects are expected to be successful and finish at the planned time. This schedule in functional mode will have many uncertainties due to the needs of the moment. Such a goal requires careful planning and advanced algorithms to solve these complex issues in a short and reasonable time. In this research, a new method is presented using the Intelligent Water Drops (IWD) algorithm for the resource-constrained project scheduling problem. For this reason and because of the importance of these projects, in this research, an optimization model has been developed for project scheduling in the state of uncertainty, which can solve many implementation obstacles. For this purpose, first, the problem is formulated as a mixed-inter linear programming (MILP) model. Next, the model is optimized using the IDW algorithm. To evaluate the performance of the proposed method, the standard data set was used in previous research and articles, and four datasets with different scales were selected from the PSLIB library. The results show that the proposed method is capable of obtaining the best precision in terms of the least critical deviation from the optimal solution. Moreover, the results of the proposed method were compared with metaheuristic algorithms, such as the particle congestion algorithm (PSO) , which was able to get the best solution among these algorithms.Keywords: Resource-Constrained Project Scheduling, Intelligent Water Drop Algorithm, Particle Swarm Optimization, Metaheuristic Algorithms, Optimization
-
A major design challenge for a grid-integrated photovoltaic power plant is to generate maximum power under varying loads, irradiance, and outdoor climatic conditions using competitive algorithm-based controllers. The objective of this study is to review experimentally validated advanced maximum power point tracking algorithms for enhancing power generation. A comprehensive analysis of 14 of the most advanced metaheuristics and 17 hybrid homogeneous and heterogeneous metaheuristic techniques is carried out, along with a comparison of algorithm complexity, maximum power point tracking capability, tracking frequency, accuracy, and maximum power extracted from PV systems. The results show that maximum power point tracking controllers mostly use conventional algorithms; however, metaheuristic algorithms and their hybrid variants are found to be superior to conventional techniques under varying environmental conditions. The Grey Wolf Optimization, in combination with Perturb & Observe, and Jaya-Differential Evolution, is found to be the most competitive technique. The study shows that standard testing and evaluation procedures can be further developed for comparing metaheuristic algorithms and their hybrid variants for developing advanced maximum power point tracking controllers. The identified algorithms are found to enhance power generation by grid-integrated commercial solar power plants. The results are of importance to the solar industry and researchers worldwide.Keywords: Artificial Intelligence, Metaheuristic Algorithms, Maximum Power Point Tracking, MPPT, Photovoltaics, Solar Energy, Solar Plant, Solar Power Generation, Sustainability, Smart Controllers
-
International Journal of Optimization in Civil Engineering, Volume:14 Issue: 3, Summer 2024, PP 445 -460
This study aimed to develop and optimize artificial stone mix designs incorporating microsilica using artificial neural networks (ANNs) and metaheuristic optimization algorithms. Initially, 10 base mix designs were prepared and tested based on previous experience and literature. The test results were used to train an ANN model. The trained ANN was then optimized using SA-EVPS and EVPS algorithms to maximize 28-day compressive strength, with aggregate gradation as the optimization variable. The optimized mixes were produced and tested experimentally, revealing some discrepancies with the ANN predictions. The ANN was retrained using the original and new experimental data, and the optimization process was repeated iteratively until an acceptable agreement was achieved between predicted and measured strengths. This approach demonstrates the potential of combining ANNs and metaheuristic algorithms to efficiently optimize artificial stone mix designs, reducing the need for extensive physical testing.
Keywords: Artificial Stone Microsilica, Mix Design Optimization, Artificial Neural Networks, Metaheuristic Algorithms, Enhanced Vibrating Particles System (EVPS), Self-Adaptive Enhanced Vibrating Particles System (SA-EVPS) -
شناسایی و بررسی انواع آسیب ها در سازه یکی از موضوعات چالش برانگیز در حوزه مهندسی به شمار می رود. در این مقاله، ردیابی آسیب در سازه های دوبعدی، به عنوان یک مسئله ارزیابی غیرمخرب، با استفاده از روش المان محدود توسعه یافته و کلاسیک به همراه روش بهینه یابی الگوریتم ژنتیک و گرگ خاکستری بررسی می شود. روش المان محدود توسعه یافته برای مدلسازی سازه ی حاوی ترک و حفره و روش بهینه یابی ژنتیک و گرگ خاکستری برای تعیین موقعیت آسیب استفاده شده است. روش المان محدود توسعه یافته ابزاری قوی برای تحلیل سازه ی حاوی آسیب بدون مشبندی مجدد است و بنابراین برای یک فرایند تکراری در تحلیل سازه مناسب است. همچنین در این مسائل به دلیل گسترده بودن پارامترها استفاده از روش های ریاضی بسیار پرهزینه است. به همین دلیل روش های فراابتکاری گسترش یافته اند، که روش های بهینه یابی گرگ خاکستری و ژنتیک از جمله این روش های رایج غیرگرادیانی هستند که برای حل مسئله ی معکوس مناسب است. این مسئله طوری تنظیم شده که الگوریتم بهینه یاب، مختصات آسیب موجود را با کمینه کردن یک تابع خطا براساس مقادیر اندازه گیری شده به وسیله ی حسگرهایی که روی سازه نصب شده اند، پیدا می کند. در نهایت، سه نمونه عددی نیز برای بررسی قابلیت و دقت روش پیشنهادی حل شده است.
کلید واژگان: روش المان محدود توسعه یافته، مساله معکوس، الگوریتم فراابتکاری، شناسایی آسیب، روشهای بهینهیابیToday, one of the important issues in the industry is the failure of parts due to the presence of holes or cracks. Among the numerical calculation tools, the classical and extended finite element method is known as the most useful numerical tools in solving engineering science problems. Identifying and investigating the types of cracks, flaws and cavities in structures is one of the most challenging issues in the field of engineering. In this article, the crack detection of two-dimensional (2D) structures using the extended finite element method (XFEM) along with genetic algorithm(GA) and grey wolf optimization method (GWO) to detect the existing crack and flaws by minimizing an error function which is also called as objective function that the evaluation of it, is based on difference between sensor measurements and suggested structure responses in each try of the algorithm. Damage detecting in 2D domains, as a non-destructive evaluation problem, is investigated using the extended finite element method along with the optimization method of genetic algorithm and grey wolf. The extended finite element method has been used to model the structure containing cracks and holes in the abaqus program, and genetic optimization and grey wolf method have been used to determine the location of the damage in which the codes were in matlab program. The extended finite element method is a powerful tool for the analysis of structures containing cracks without remeshing and is therefore suitable for an iterative process in structural analysis. Also, in these problems, due to the wide range of parameters, it is not logical and rational to use mathematical methods. For this reason, meta heuristic methods have been developed, and grey wolf optimization methods and genetic algorithm are among these common non-gradient methods that are suitable for solving the inverse problem. This problem is set so that the optimizer algorithm finds the existing crack coordinates or holes coordinates by minimizing an objective function based on the values measured by the sensors installed on the structure. Among the limitations of the classical finite element method in the investigation of various problems in the field of fault and crack detection, we can point out the dependence of the crack or cavity on the finite element mesh, re-meshing and in other special cases the use of singular elements, which are completely removed by using The extended finite element. In this research, in order to identify the damage, the genetic optimization algorithm and the gray wolf have been used. These algorithms are designed in such a way to determine the characteristics of the damage by minimizing an error function. The defined error function is defined as the difference between the response obtained from the algorithm analysis and the response recorded in the main structure modeled in ABAQUS software, at the location of the sensors. Finally, three reference numerical examples have been solved to evaluate the capability and accuracy of the proposed method, and the result of the results shows a reduction in the cost of solving and an increase in the accuracy of the results.
Keywords: Extended finite element Method, Flaw detection, Metaheuristic algorithms, Inverse problem -
Great attention should be paid to planning and scheduling surgeries in the operating room which is the most sensitive ward in the health context in terms of cost and specific sensitivity due to its association with the life and death of individuals. In this case, reusable sterile equipment and devices are crucial issues because the hospital or nosocomial infections result from insufficient sterilization of these instruments. Therefore, sterilization of reusable medical devices is a necessity in the operating room to prevent possible infections. This study solves the integrated operating rooms and sterile section planning problem to minimize the total costs of sterilization, surgery postponement, and performance. This study also minimizes the completion time of surgery considering nondeterministic operating times and emergency-elective patients. In the real world, surgery time may be nondeterministic based on the conditions of the patient, surgeon, equipment, and instruments; hence, it is valuable to find a robust solution for planning under such circumstances. After presenting a bi-objective mathematical model for this problem, an improved epsilon constraint method was used to solve problems with small dimensions, and two metaheuristics NSGA-II and NRGA were developed for large dimensions regarding NP-hard problems. These two algorithms were analysed in terms of five indicators. The results indicated the superiority of the NSGA-II algorithm over NRGA to solve such problems.
Keywords: Operating, Sterile Rooms, Planning, Scheduling, Emergency, Elective Patients, Robust Optimization, Metaheuristic Algorithms -
International Journal of Optimization in Civil Engineering, Volume:14 Issue: 1, Winter 2024, PP 61 -81
The analysis and design of high-rise structures is one of the challenges faced by researchers and engineers due to their nonlinear behavior and large displacements. The moment frame system is one of the resistant lateral load-bearing systems that are used to solve this problem and control the displacements in these structures. However, this type of structural system increases the construction costs of the project. Therefore, it is necessary to develop a new method that can optimize the weight of these structures. In this work, the weight of these significant structures is optimized by using one of the latest metaheuristic algorithms called special relativity search. The special relativity search algorithm is mainly developed for the optimization of continuous unconstrained problems. Therefore, a penalty function is used to prevent violence of the constraints of the problem, which are tension, displacement, and drift. Also, using an innovative technique to transform the discrete problem into a continuous one, the optimal design is carried out. To prove the applicability of the new method, three different problems are optimized, including an eight-story one-span, a fifteen-story three-span bending frame, and a twenty-four-story three-span moment frame. The weight of the structure is the objective function, which should be minimized to the lowest possible value without violating the constraints of the problem. The calculation of stress and displacements of the structure is done based on the regulations of AISC-LRFD requirements. To validate, the results of the proposed algorithm are compared with other advanced metaheuristic methods.
Keywords: Optimal design of steel frames, tall buildings, metaheuristic algorithms, artificial intelligence, special relativity search algorithm -
یکی از مهم ترین مشکلات درجهان، افزایش هزینه ها در حوزه سلامت است؛ از پژوهش های مهم سال های اخیر برای کاهش این هزینه ها، پیش بینی بیماری ها می باشد. بیماری های کبد یکی از بیماری های جدی در جهان است، زیرا کبد نقش حیاتی در بدن انسان دارد و هرگونه اختلال در کبد باعث مشکلات جدی و جبران ناپذیری در بدن می شود. اغلب بیماری های کبدی تا مراحل پیشرفته، علایم خاصی را نشان نمی دهند. نداشتن علایم در مراحل اولیه ممکن است موجب تشخیص نادرست بیماری توسط بسیاری از پزشکان گردد که این تشخیص نادرست می تواند منجر به درمان اشتباه و تجویز داروی نامناسب و در نتیجه ایجاد عوارض حاد و بلند مدت این بیماری و یا مشکلات دیگر گردد. بنابراین تشخیص زودتر و دقیق تر مشکلات کبدی به کمک تجزیه و تحلیل دقیق ویژگی های موثر یک سیستم تشخیص پزشکی اتوماتیک، جهت درمان صحیح و پیشگیری از آسیب های جدی به این عضو حیاتی، ضروری به نظر می رسد. به همین منظور استفاده از تکنیک های داده کاوی، یادگیری ماشین و بهره گیری از الگوریتم های فراابتکاری جهت ارایه مدلی هوشمند برای تشخیص زودهنگام این بیماری لازم و ضروری می باشد. بر این اساس هدف این پژوهش بررسی جامع بر بیمار های کبدی، روش های تشخیص و پیش بینی این بیماری ها توسط تکنیک های یادگیری ماشین و الگوریتم های فراابتکاری از نظر اهداف، محدودیت ها و قابلیت ها در حوزه پزشکی می باشد. نتایج گویا این است الگوریتم جنگل تصادفی، شبکه های فازی عصبی و الگوریتم بردار پشتیبان نسبت به الگوریتم های فراابتکاری راه-حل های تقریبی را سریع تر پیدا می کنند و همچنین در مقایسه با الگوریتم های قطعی معمولا نتایج بهتری را ارایه می-دهند، همچنین از میان مجموعه داد های بیمارهای کبدی مجموعه داده ILPD به دلیل دسترسی آسان تر و ابزار MATLAB به دلیل سادگی و قابل فهم بودن بیشترین کاربرد را در تشخیص و پیش بینی بیماری های کبد دارند.
کلید واژگان: بیماری های کبد، تشخیص و پیش بینی هوشمند، داده کاوی، تکنیک های یادگیری ماشین، الگوریتم های فرابتکاریOne of the most important problems in the world is the increase in costs in the field of health. One of the important research in recent years to reduce these costs is the prediction of diseases. Liver diseases are one of the most serious diseases in the world, because the liver plays a vital role in the human body, and any liver disorder causes serious and irreparable problems in the body. Most liver diseases do not show specific symptoms until advanced stages. Not having symptoms in the early stages may lead to the wrong diagnosis of the disease by many doctors, and this wrong diagnosis can lead to the wrong treatment and prescription of inappropriate medicine, and as a result, the creation of acute and long-term symptoms of this disease or other problems. Therefore, earlier and more accurate diagnosis of liver problems with the help of detailed analysis of the effective features of an automatic medical diagnosis system, for correct treatment and prevention of serious damage to this vital organ, seems necessary. For this purpose, it is necessary to use data mining techniques, machine learning and innovative algorithms to provide an intelligent model for early diagnosis of this disease. Therefore, the aim of this research is to comprehensively investigate liver diseases, methods of diagnosis and prediction of these diseases by machine learning techniques and meta-heuristic algorithms in terms of goals, limitations and capabilities in the field of medicine. The results show that random forest algorithm, fuzzy neural networks and support vector machine find approximate solutions faster than meta-initiative algorithms, and also usually get better results compared to deterministic algorithms. Also, among the datasets of liver diseases, the ILPD dataset is the most widely used in the diagnosis and prediction of liver diseases due to its easier access and the MATLAB tool due to its simplicity and comprehensibility.
Keywords: iver diseases, intelligent diagnosis, prediction, Data Mining, Machine learning techniques, metaheuristic algorithms -
Journal of Quality Engineering and Production Optimization, Volume:8 Issue: 2, Summer-Autumn 2023, PP 57 -84A novel mixed integer non-linear mathematical model is presented in this paper for the two-echelon allocation-routing problem by applying the conditions of the route and transportation fleet under uncertainty. The cost of allocating drivers to non-homogeneous vehicles is calculated in this model based on the type of the vehicle, the lifecycle of the car, the experience of the driver, and different degrees of hardness that are defined for various routes. The cost of passing the route is defined based on an initial fixed cost and the degree of hardness of the route. Also, the reliability of the routes in each section is defined as an objective in the second echelon of the model aimed at enhancing the reliability rate. Two metaheuristic algorithms, NSGAII and MOPSO, are utilized to solve the model. Then, their performance rates in problems with different sizes are statistically evaluated and compared by different indices, following the adjustment of their parameters by Taguchi's method, through which results indicated the high efficiency of the model. A sensitivity analysis is ultimately performed on the results obtained from the solution, and some suggestions are made for the development of the model.Keywords: Two-Echelon Allocation-Routing Model, Reliability, Multi-Objective Optimization, Metaheuristic Algorithms
-
با توجه به گسترش روز افزون استفاده از سامانه های اینترنت اشیاء صنعتی یکی از پرکابردترین مکانیزم های امنیتی، سیستم های تشخیص نفوذ در اینترنت اشیاء صنعتی می باشد. در این سیستم ها از تکنیک های یادگیری عمیق به طور فزآینده ای برای شناسایی حملات، ناهنجاری ها یا نفوذ استفاده می شود. در یادگیری عمیق مهم ترین چالش برای آموزش شبکه های عصبی، تعیین فراپارامترهای اولیه در این شبکه ها است. ما برای غلبه بر این چالش، به ارایه ی رویکردی ترکیبی برای خودکارسازی تنظیم فراپارامتر در معماری یادگیری عمیق با حذف عامل انسانی پرداخته ایم. در این مقاله یک سیستم تشخیص نفوذ در اینترنت اشیاء صنعتی مبتنی بر شبکه های عصبی کانولوشن (CNN) و شبکه عصبی بازگشتی مبتنی بر حافظه کوتاه مدت (LSTM) با استفاده از الگوریتم های فراابتکاری بهینه سازی ازدحام ذرات (PSO) و وال (WOA) ارایه شده است. این سیستم یک روش ترکیبی براساس شبکه های عصبی و الگوریتم های فراابتکاری برای بهبود عملکرد شبکه عصبی در راستای افزایش نرخ تشخیص و کاهش زمان آموزش شبکه های عصبی می باشد. در روش ما با درنظر گرفتن الگوریتم PSO-WOA، فراپارامترهای شبکه عصبی بدون دخالت عامل انسانی و به صورت خودکار تعیین شده است. در این مقاله از مجموعه داده ی UNSW-NB15 برای آموزش و آزمایش استفاده شده است. در این پژوهش، الگوریتم PSO-WOA با محدود کردن فضای جستجو، فراپارامترهای شبکه عصبی را بهینه کرده و شبکه عصبی CNN-LSTM با فراپارامترهای تعیین شده آموزش دیده است. نتایج پیاده سازی حکایت از آن دارد که علاوه بر خودکارسازی تعیین فراپارامترهای شبکه ی عصبی، نرخ تشخیص روش ما 98.5 درصد بوده که در مقایسه با روش های دیگر بهبود مناسبی داشته است.
کلید واژگان: سیستم تشخیص نفوذ، اینترنت اشیاء صنعتی، الگوریتم های فراابتکاری، شبکه عصبیDue to the increasing use of industrial Internet of Things (IIoT) systems, one of the most widely used security mechanisms is intrusion detection system (IDS) in the IIoT. In these systems, deep learning techniques are increasingly used to detect attacks, anomalies or intrusions. In deep learning, the most important challenge for training neural networks is determining the hyperparameters in these networks. To overcome this challenge, we have presented a hybrid approach to automate hyperparameter tuning in deep learning architecture by eliminating the human factor. In this article, an IDS in IIoT based on convolutional neural networks (CNN) and recurrent neural network based on short-term memory (LSTM) using metaheuristic algorithms of particle swarm optimization (PSO) and Whale (WOA) is used. This system uses a hybrid method based on neural networks and metaheuristic algorithms to improve neural network performance and increase detection rate and reduce neural network training time. In our method, considering the PSO-WOA algorithm, the hyperparameters of the neural network are determined automatically without the intervention of human agent. In this paper, UNSW-NB15 dataset is used for training and testing. In this research, the PSO-WOA algorithm has use optimized the hyperparameters of the neural network by limiting the search space, and the CNN-LSTM neural network has been trained with this the determined hyperparameters. The results of the implementation indicate that in addition to automating the determination of hyperparameters of the neural network, the detection rate of are method improve 98.5, which is a good improvement compared to other methods.
Keywords: intrusion detection system, Industrial Internet of Things, metaheuristic algorithms, neural networks -
International Journal of Optimization in Civil Engineering, Volume:13 Issue: 4, Autumn 2023, PP 477 -495This paper presents the chaotic variants of the particle swarm optimization-statistical regeneration mechanism (PSO-SRM). The nine chaotic maps named Chebyshev, Circle, Iterative, Logistic, Piecewise, Sine, Singer, Sinusoidal, and Tent are used to increase the performance of the PSO-SRM. These maps are utilized instead of the random number, which defines the solution generation method. The robustness and performance of these methods are tested in the three steel frame design problems, including the 1-bay 10-story steel frame, 3-bay 15-story steel frame, and 3-bay 24-story steel frame. The optimization results reveal that the applied chaotic maps improve the performance of the PSO-SRM.Keywords: Chaotic maps, structural optimization, Particle swarm optimization-statistical regeneration mechanism, steel structures, metaheuristic algorithms
-
International Journal of Optimization in Civil Engineering, Volume:13 Issue: 4, Autumn 2023, PP 533 -561Structural topology optimization provides an insight into efficient designing as it seeks optimal distribution of material to minimize the total cost and weight of the structures. This paper presents an optimum design of steel moment frames and connections of structures subjected to serviceability and strength constraints in accordance with AISC-Load and Resistance Factor Design (LRFD). In connection topology optimizations, different beam and column sections and connections and also to optimize two steel moment frames a genetic algorithm was used and their performance was compared. Initially, two common steel moment frames were studied, only for the purpose of minimizing the weight of the structure and the members of structure are considered as design variables. Since the cost of a steel moment frame is not solely related to the weight of the structure, in order to obtain a realistic plan, in the second part of this study, for the other two frames the cost of the connections is also added to the variables. The results indicate that the steel frame optimization by applying real genetic algorithm could be optimal for structural designing. The findings highlighted the prominent performance and lower costs of the steel moment frames when different connections are used.Keywords: Steel frame optimization, metaheuristic algorithms, connection topology optimization, genetic algorithm
-
International Journal of Optimization in Civil Engineering, Volume:13 Issue: 3, Summer 2023, PP 309 -325
In this paper, three recently improved metaheuristic algorithms are utilized for the optimum design of the frame structures using the force method. These algorithms include enhanced colliding bodies optimization (ECBO), improved shuffled Jaya algorithm (IS-Jaya), and Vibrating particles system - statistical regeneration mechanism algorithm (VPS-SRM). The structures considered in this study have a lower degree of statical indeterminacy (DSI) than their degree of kinematical indeterminacy (DKI). Therefore, the force method is the most suitable analysis method for these structures. The robustness and performance of these methods are evaluated by the three design examples named 1-bay 10-story steel frame, 3-bay 15-story steel frame, and 3-bay 24-story steel frame.
Keywords: Enhanced colliding bodies optimization, improved shuffled Jaya algorithm, vibrating particles system - statistical regeneration mechanism algorithm, force method, structural optimization, metaheuristic algorithms
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.