nsga-ii algorithm
در نشریات گروه فنی و مهندسی-
طراحی و برنامه ریزی سیستم های تولید سلولی در اکثر مدل های کلاسیک بر مبنای به حداقل رساندن هزینه های تولید یا افزایش سود تولیدکنندگان انجام شده است. در صورتی که با گسترش سیستم های تولیدی و افزایش تقاضا برای محصولات، نگرانی ها در خصوص مسائل زیست محیطی و مصرف بی رویه منابع تجدیدناپذیر افزایش یافته است. از طرفی، توجه به کارگران و ایمنی محیط کار در ایجاد یک سیستم تولید پایدار، بعنوان امری حیاتی معرفی شده است. در این مقاله یک مدل ریاضی چندهدفه جدید برای ایجاد سیستم تولید سلولی پایدار با توجه به موارد ذکر شده ارائه شده تا علاوه بر بهینه سازی اثرات زیست محیطی سیستم تولید، هزینه های تولید را نیز به حداقل برساند. در واقع مدل پیشنهادی به عنوان یک سیستم تولید سلولی پایدار به دنبال راه حلی برای ایجاد یک سیستم تولیدی است که در آن برای تولیدکنندگان، محیط زیست و کارگران ارزش افزوده ایجاد شود. در ادامه، مدل با استفاده از روش اپسیلون محدودیت حل شده و جواب های متنوعی به صورت جبهه پارتو برای تصمیم گیری ارائه گردید. با توجه به NP-hard بودن مدل پیشنهادی و عدم توانایی نرم افزار گمز در یافتن جواب های بهینه برای مسائل در مقیاس بزرگ، یک الگوریتم ژنتیک مرتب سازی غیرمغلوب (NSGA-II) برای حل آن ارائه شده است. نتایج نشان داد، روش فراابتکاری زمان حل را حداقل به میزان سه برابر نسبت به روش اپسیلون محدودیت، کاهش داده است؛ همچنین کاهش سطح خطرات محیطی منجر به افزایش هزینه های تولید شده است. در نهایت، کاربردپذیری مدل پیشنهادی در یک کارگاه تولید تجهیزات کشاورزی به صورت مطالعه موردی مورد بررسی قرار گرفته است.کلید واژگان: سیستم تولید سلولی پویا، انرژی، برنامه ریزی تولید، روش اپسیلون- محدودیت، الگوریتم NSGA-IIThe design and planning of cellular Manufacturing systems in most classical models is based on minimizing production costs or increasing producers' profits. With the expansion of production systems and the increase in demand for products, concerns about environmental issues and excessive consumption of non-renewable resources have increased. On the other hand, paying attention to workers and the safety of the work environment has been introduced as a vital issue in creating a sustainable Manufacturing system. In this article, a new multi-objective mathematical model for creating a sustainable cellular Manufacturing system is presented according to the mentioned items in order to minimize the production costs in the system in addition to optimizing the environmental effects of the Manufacturing system. In the following, the model was solved using the epsilon constraint method and various solutions were presented in the form of a Pareto front for decision making. Due to the NP-hardness of the proposed model and the inability of the GAMS software to find optimal solutions for large-scale problems, a non-dominant sorting genetic algorithm (NSGA-II) is presented to solve it. The results showed that the meta-heuristic method has reduced the solution time by at least three times compared to the epsilon constraint method; Also, reducing the level of environmental risks has led to an increase in production costs. Finally, the applicability of the proposed model in an agricultural equipment production workshop has been investigated as a case study.Keywords: Dynamic Cellular Manufacturing System, Energy Scaling, Production Planning, Epsilon-Constraint Method, NSGA-II Algorithm
-
The development of green product processes is a strategic approach to minimize the impact of organizational supply chain on the environment while simultaneously expanding its economic performance. To achieve this task, it is crucial to emphasize aspects related to performance in optimizing resource utilization and implementing sustainability principles within an organizational domain. To this end, a multi-objective mixed-integer linear programming model is presented in this study with the objective of minimizing the production time of textiles, transportation costs, and inventory of the products, as well as minimizing the environmental effects of the processes of developing green products. In this model, the constraints and problem parameters are deterministic and solved using weighted sum methods, utilizing real data obtained from the "Oyaz" industrial group. By solving the model, an optimal combination for the values of the objective functions is obtained both collectively and separately. Furthermore, the capability of the proposed model is evaluated for solving large-scale instances using the NSGA-II algorithm. This metaheuristic method has demonstrated satisfactory capabilities compared to the mathematical model because of the slight difference in modeling errors while confirming the accuracy of the developed mathematical model, proving the accuracy and efficiency of the NSGA-II algorithm. Consequently, the sensitivity analysis examines the influence of changing key parameters, such as the maximum storage capacity of production centers, on the decisions of the proposed model. This parameter change is determined through consultation with experts in the textile field. Based on the results obtained, changing the maximum storage capacity has a considerable impact on fibers and cotton. Additionally, if the capacity is changed to the maximum possible value, it has the greatest impact on the purifiers.Keywords: Green product development, Green process, Mathematical Modeling, textile industry, Metaheuristic, NSGA-II algorithm
-
هدف
یکی از حیاتی ترین زیر مجموعه های سیستم مراقبت های بهداشتی پیوند عضو می باشد و از آن جاکه مراکز پیوند عضو به صورت مستقیم با عمل های جراحی و درنتیجه، زندگی انسان ها سروکار دارند، اهمیت این موضوع مورد توجه بیشتری قرار گرفته است. یکی از عمده ترین تفاوت های زنجیره تامین پیوند عضو با سایر زنجیره های تامین احتمال فساد محصولات مربوطه می باشد. لذا زمان و هم چنین بحث مکان یابی مراکز پیوند عضو از اهمیت ویژه ای برخوردار است. از طرفی، با توجه به رشد سریع تقاضا برای پیوند عضو و کمبود منابع، زمان انتظار بیمار برای تکمیل پروسه پیوند نقش حیاتی را در سیستم پیوند اعضا ایفا می کند.
روش شناسی پژوهش:
این مطالعه یک مدل ریاضی دوهدفه استوار برای مساله مکان یابی تخصیص مراکز پیوند عضو تحت شرایط عدم قطعیت ارایه می دهد که هزینه های کل سیستم پیوند عضو و هم چنین میانگین زمان انتظار بیمار برای انجام پیوند عضو را که از یک سیستم صف G/G/m تبعیت می کند، کمینه می سازد.
یافته هابرای حل این مدل الگوریتم ژنتیک رتبه بندی نامغلوب (NSGA-II) به کار گرفته شده است. درنهایت، قابلیت اجرای این مدل و کارایی الگوریتم مذکور نسبت به شاخص های تعریف شده از طریق آزمایش های عددی نشان داده شده است.
اصالت/ارزش افزوده علمی:
از آن جاکه هر عضو زمان مشخصی را می تواند خارج از بدن سپری کند و احتمال فساد یا کاهش کیفیت پیوند وجود دارد، زمان بین خروج عضو از بدن و تکمیل عمل پیوند نقشی اساسی در سیستم پیوند عضو ایفا می کند.
کلید واژگان: بهینه سازی چندهدفه، الگوریتم NSGA-II، پیوند عضو، تئوری صف، مدیریت زنجیره تامینPurposeOne of the most vital subcategories of the health care system is organ transplantation, and since organ transplant centers deal directly with surgical operations and, as a result, human lives, the importance of this issue has received more attention. One of the major differences between the organ transplant supply chain and other supply chains is the possibility of corruption of related products. Therefore, the time and also the location of organ transplant centers are of special importance. On the other hand, due to the rapid growth of the demand for organ transplantation and the lack of resources, the patient's waiting time to complete the transplantation process plays a vital role in the organ transplantation system.
MethodologyThis study presents a robust bi-objective mathematical model for the location problem of allocating organ transplant centers under uncertainty, which includes the total costs of the organ transplant system as well as the average patient waiting time for organ transplantation, which follows a G/G/m queuing system.
FindingsTo solve this model, the Non-Dominated Sorting Genetic Algorithm II (NSGA-II) has been used. Finally, the applicability of this model and the efficiency of the mentioned algorithm compared to the defined indicators have been shown through numerical experiments.
Originality/Value:
Since each organ can spend a certain amount of time outside the body and there is a possibility of corruption or a decrease in the quality of the transplant, the time between the organ leaving the body and the completion of the transplant operation plays an essential role in the transplant system.
Keywords: Multi objective Optimization, NSGA-II algorithm, organ transplantation, Queuing Theory, Supply chain management -
هدف از این تحقیق، توسعه ی یک مدل زنجیره ی تامین چندمحصولی چنددوره یی با در نظر گرفتن ضایعات مواد اولیه ی موجود در محموله ی خریداری شده
از تامین کننده، ضایعات مواد اولیه حین تولید و کارایی نیروی انسانی است. این مدل به صورت برنامه ریزی عدد صحیح مختلط دوهدفه، با اهداف کمینه سازی
هزینه ها و کمینه سازی ضایعات مواد اولیه در شرایط عدم قطعیت است. در دنیای واقعی برخی پارامترهای زنجیره ی تامین مانند تقاضا با عدم قطعیت مواجه اند، بنابراین رویکرد بهینه سازی استوار سناریومحور برای مواجهه با این عدم قطعیت به کار برده شده است. برای حل مدل، ابتدا مدل مذکور با روش محدودیت اپسیلون و دو الگوریتم N S G A-I I و 2S P E A حل شده است. سپس کیفیت جواب و زمان حل آنها با یکدیگر مقایسه شده است. برای اتخاذ تصمیم از میان پاسخ های پارتو از شاخص ارزیابی عملکرد M I D و روش فرایند تحلیل سلسله مراتبی)A H P(استفاده شده است.کلید واژگان: بهینه سازی استوار سناریومحور، الگوریتم NSGA-II، الگوریتم 2SPEA، عدم قطعیت، طراحی زنجیره ی تامینNowadays, increasing the quality level in production systems and reducing costs are two of the signicant goals of manufacturers. More manufacturers pay for more qualitative raw materials, more skilled labor, and more advanced and accurate machines the more waste is reduced. Increasing quality levels and decreasing costs become more complex when some parameters are under uncertainty. One of the methods to encounter uncertainties is robust optimization, where uncertainty probability distribution is unknown. As a consequence, the robust scenario-based approach, which is presented by Mulvey, is applied. In this paper, we present a biobjective scenario-based supply chain model. In this model, three echelons including suppliers, manufacturers, and customers are considered. Also, we consider uncertainty in backorder, demand, and cost values. The rst objective function aims to minimize supply chain costs including production, raw material purchasing, production inventory holding, raw material inventory holding, transportation, and backorder. The second objective function aims to minimize the total amount of raw material wastes in the production line and supplier batch. The proposed model has been dened as a multi-product, multi-period, multiple suppliers, multiple customers, and multiple transportation modes mixed-integer linear programming model. Also, in this model, workforce e- ciency, storage and transportation capacities, and inventory planning are considered. The model parameters are considered randomly distributed. The Epsilon constraint method, NSGA-II, and SPEA2 algorithms are applied to solving the proposed model. Also, the Taguchi method is applied to tune the parameters of the algorithms. Then, a comparison between the quality of results and the CPU time of these methods is provided. This comparison indicates that the use of evolutionary algorithms provides close results with the exact method in a shorter CPU time. Afterward, the Mean Ideal Distance (MID) and Analytic Hierarchy Process (AHP) methods are respectively employed to evaluate Pareto fronts performance and make a decision about selecting the best cost and quality level policy.
Keywords: Robust optimization, NSGA-II algorithm, SPEA2 algorithm, uncertainty, supply chain design -
امروزه برای دستیابی به منافع رقابتی در بازار، طراحی شبکه زنجیره تامین، امری ضروری است. بهینه سازی این شبکه منجر به مدیریت کارا و موثر عملیات کل زنجیره تامین می شود. در این مقاله یک زنجیره تامین حلقه بسته طراحی شده است که به صورت چند هدفه، چند سطحی و تک محصولی با بازگشت محصول بررسی می شود. اهداف اصلی این مسیله، حداقل کردن هزینه ها، افزایش سود حاصل از محصول بازیافتی، افزایش صرفه جویی هزینه های حاصل از بازیافت و اثرات زیست محیطی می باشد. از طرفی با توجه به اینکه در دنیای واقعی، داده های مربوط به شاخص های اثرگذار در مسایل، به صورت قطعی در دسترس نمی باشد بنابراین استفاده از رویکرد غیرقطعی مناسبتر خواهد بود. در این مطالعه نیز، تقاضا و ظرفیت تامین کننده غیر قطعی و رویکرد استفاده شده برای حل مدل چند هدفه رویکرد THو با استفاده از نرم افزار GAMS حل و مورد بررسی قرار گرفت. با افزایش سایز مسیله، حل مدل با روش ذکر شده غیر ممکن است بنابراین مسیله پیشنهادی با استفاده از الگوریتم های MOPSO و NSGA-II حل و نتایج عملکرد هر دو الگوریتم با هم مورد مقایسه قرار گرفت. نتایج نشان دهنده این است که جواب های تولیدی با الگوریتم NSGA-II از کیفیت بالاتری برخوردار است.کلید واژگان: زنجیره تامین حلقه بسته، تقاضای فازی، ظرفیت تامین کننده فازی، الگوریتم NSGA-II، الگوریتم MOPSONowadays, in order to achieve competitive advantages in the market, it is essential to design the supply chain network. Optimizing this network leads to efficient and effective management of the entire supply chain operation. In this article, a closed loop supply chain is designed, which is examined as multi-objective, multi-level and single product with product returns. The main goals of this issue are to minimize costs, increase profit from recycled products, increase cost savings from recycling and environmental effects. On the other hand, due to the fact that in the real world, the data related to the effective indicators in the problems are not available definitively, so it will be more appropriate to use the non-deterministic approach. In this study, the demand and capacity of the non-deterministic supplier and the approach used to solve the TH approach multi-objective model were solved and investigated using GAMS software. By increasing the size of the problem, it is impossible to solve the model with the mentioned method, so the proposed problem was solved using MOPSO and NSGA-II algorithms and the performance results of both algorithms were compared. The results show that the answers produced by the NSGA-II algorithm are of higher quality.Keywords: Closed loop supply chain, Fuzzy Demand, fuzzy supplier capacity, NSGA-II algorithm, MOPSO algorithm
-
Journal of Modern Processes in Manufacturing and Production, Volume:12 Issue: 2, Spring 2023, PP 53 -79Circular manufacturing supply chains offer a novel and compelling perspective within the realm of supply chain sustainability. Consequently, the development of a suitable solution approach for circular manufacturing supply chains holds significant value. This study presents appropriate solution approaches for a mathematical model that has been formulated for a circular supply chain. To address the small-sized problem, the epsilon-constraint method is proposed. This method aids in obtaining a Pareto set of optimal solutions, facilitating the evaluation of trade-offs among three objectives. Given the NP-hard nature of the problem, the non-dominated sorting genetic algorithm (NSGA-II) is employed to approximate the Pareto front for larger problem sizes. A comparative analysis is conducted between the outcomes achieved in smaller dimensions using the epsilon-constraint method and those generated by the metaheuristic algorithm. The results indicate that the error percentage of the objective function, when compared to the epsilon method, remains consistently below 1%, underscoring the effectiveness of the proposed algorithm. These methodologies empower decision-makers to offer efficient, optimal solutions, enabling them to select the most suitable alternative based on budgetary considerations and organizational policies.Keywords: Circular Manufacturing Supply Chain, Optimization, epsilon-constraint, NSGA-II algorithm
-
In evaluating projects, there are many qualitative criteria, weighting, and quantifying, which have no definitive nature and are associated with various ambiguities. Also, because of the relationship between these conflicting criteria (goals), no single and multip optimal solutions (non-dominant set) should be sought. Because of the relationship between these inconsistent criteria (goals), no single and multiple optimal solutions (non-dominant set) should be sought. Accordingly, this study aims to provide an appropriate approach to develop a model for selecting construction projects in the public sector based on a mathematical multi-objective fuzzy model, which can cover the multi-objective nature of the problem and consider inherent inaccuracies and problem uncertainties. This paper first converts the model to a non-linear model by fractional planning concepts, defuzzification according to Jimenez and Yang approaches, then solves by a non-dominated sorting genetic algorithm (NSGA-II) to provide a more comprehensive model for governmental project selection public when allocating budget. This paper is attempted to develop a new model for selecting construction projects while considering the uncertainty of parameters using fuzzy theory in the public sector to show the performance of the developed model. The fuzzy model solution is compared with the deterministic model to analyze the results. The results show the improvements reflect the success rate of accomplishment for the corresponding goals in the fuzzy model compared to the exact one.
Keywords: Capital project selection, fuzzy goal programming, fractional linear programming, NSGA-II algorithm -
هدف
بهینه سازی تراز منفی پرتفوی مالی شعب با رعایت محدودیت های تعریف شده در نظام بانکی ایران.
روش شناسی پژوهشدر سال های اخیر مدل های متعددی برای سبد سرمایه گذاری پیشنهاد شده است. در بانک ها، عملیات سرمایه پذیری به موازات سرمایه گذاری انجام می شود. جذب سپرده و پرداخت وام ارکان اصلی سرمایه پذیری و سرمایه گذاری هستند و اساس پرتفوی منابع و مصارف در بانک را شکل می دهند. در این پژوهش یک مدل برنامه ریزی چند هدفه طراحی شده است، که اهداف آن ماکزیمم سازی بازدهی و مینیم سازی ریسک هستند.
یافته هارویکرد مسیله بگونه ای است که با اخذ هزینه های اداری و پرسنلی و نرخ های سود سپرده و تسهیلات و نرخ مبادلات بازار داخلی بتواند پرتفوهای متنوع پیشنهاد دهد. شعب متناسب با اقتضایات خود پرتفوی مناسب را به عنوان هدف و برنامه کاری انتخاب می کنند.
اصالت/ارزش افزوده علمیبه دلیل ماهیت مسیله، که غیرخطی سخت می باشد، مدل با استفاده از الگوریتم تکاملی NSGA-II حل شده است. خروجی حل مسیله، مجموعه ای از جواب های بهینه، روی مرز پاراتو می باشد. هر یک از پرتفوها، متناسب با میزان بازدهی و ریسک، یک انتخاب استراتژیک برای تصمیم گیرنده است.
کلید واژگان: پرتفوی، موسسات مالی و اعتباری، بازدهی و ریسک، الگوریتم NSGA-II، مدل چند هدفهPurposeOptimizing the negative balance of the financial portfolio of branches by observing the limits defined in the banking system of Iran.
MethodologyIn recent years, several models have been proposed for the investment portfolio. In banks, Fundraising operations are carried out in parallel with investments. Attracting deposits and repaying loans are the main pillars of investment and form the basis of the resource and expenditure portfolio in the bank. In this research, a multi-objective planning model is designed to maximize returns and minimize risk.
FindingsThe approach of the problem is such that by taking administrative and personnel costs and interest rates on deposits and facilities and exchange rates of the domestic market can offer a variety of portfolios. The branches select the appropriate portfolio as the goal and work plan according to their requirements.
Originality/ValueDue to the nature of the problem, which is hard nonlinear, the model is solved using NSGA-II evolutionary algorithm. The output of solving the problem is a set of optimal solutions on the Pareto frontier. Each of the portfolios is a strategic choice for the decision-maker, according to the level of return and risk.
Keywords: Portfolio, Financial, Credit Institutions, Return, risk, NSGA-II algorithm, multi-objective model -
مجله آب و فاضلاب، پیاپی 135 (مهر و آبان 1400)، صص 136 -151
توسعه سریع و ناپایدار شهر ها منجر به تغییر خصوصیات هیدرولوژیکی حوضه ها شده و ریسک وقوع آب گرفتگی ناشی از رواناب های شهری را افزایش داده است. یکی از راه حل های به کار گرفته شده برای کنترل کمی و کیفی رواناب های شهری، رویکرد های مبتنی بر زیرساخت های سبز و روش های توسعه کم اثر است که توجه پژوهشگران زیادی را به خود جلب کرده است. در این پژوهش، از مدل SWMM به منظور شبیه سازی فرایند بارش رواناب در ناحیه یک منطقه 11 شهرداری تهران استفاده شد. 6 سناریو شامل ترکیبات مختلفی از انواع LID شامل بام سبز، مخزن باران، سلول نگهداشت زیستی، معابر نفوذپذیر، جوی باغچه و حوضچه نفوذ در نظر گرفته شد. سپس مدل SUSTAIN به منظور ارزیابی عملکرد هر سناریو به کار گرفته شد. در گام بعد پاسخ های بهینه از طریق الگوریتم بهینه سازی NSGA-II به دست آمد و برای هر سناریو یک منحنی پارتوی هزینه-عملکرد ارایه شد. نتایج نشان داد پاسخ های منتخب پیاده سازی سناریوهای 1 تا 6 به ترتیب حجم رواناب را به میزان 53، 4، 66، 72، 31 و 34 درصد کاهش دادند. سناریوی 4 با ترکیبی از مخازن باران، معابر نفوذپذیر و جوی باغچه با 72 درصد و هزینه 2/12 میلیون دلار، بهینه ترین عملکرد را نسبت به پاسخ های متناظر از سناریو های دیگر نشان داد و سناریوی 6 نیز با 34 درصد کاهش حجم رواناب و هزینه 1/7 میلیون دلار در رتبه بعدی قرار گرفت. به کارگیری تلفیقی مدل های SUSTAIN و SWMM کمک کرد تا علاوه بر عملکرد فنی، هزینه و عملکرد هر سناریو ارزیابی و امکان بهینه سازی آن فراهم شد. نتایج به دست آمده از این پژوهش می تواند مدیران شهری و تصمیم گیرندگان را در طراحی، تخمین عملکرد و هزینه های اجرایی سناریو های LID یاری کند.
کلید واژگان: مدیریت رواناب شهری، روش های توسعه کم اثر، SUSTAIN، زیرساخت سبز، الگوریتم NSGA-IIUnsustainable development and rapid urbanization have led to changes in the hydrological characteristics of watersheds, and the risk of flooding has been increased consequently. One of the solutions used for quantitative and qualitative control of urban runoff is green infrastructure and low impact development (LID) based approaches that have attracted the attention of many researchers. In this study, SWMM was used to simulate the rainfall-runoff process in region 1, district 11, Tehran. Six scenarios, including different combinations of several LID types such as Green Roof, Rain Barrel, Bioretention Cell, Porous Pavement, Vegetated Swale, and Dry Pond were developed. Then the SUSTAIN model was utilized to assess each scenario's performance. Optimal solutions were then obtained using non-dominated sorting genetic algorithm-II (NSGA-II), and a cost-effectiveness Pareto frontier curve was performed for all scenarios. Results showed that the selected solutions of scenarios one to six reduced the runoff volume by 53%, 4%, 66%, 72%, 31%, 34%, respectively. Scenario 4, with a combination of rain barrels, porous pavements, and vegetated swales with a runoff volume reduction of 72% and an implementation cost of $ 12.2 million, showed the best performance, comparing the other scenarios' corresponding optimal solutions. Scenario 6 also came in next with a 34% effectiveness and a cost of $ 7.1 million. The combined use of SUSTAIN and SWMM, in addition to the technical evaluation, helped to attain optimized, cost-effective solutions for developed scenarios as well. The results of this study can also help relevant organizations and decision-makers to design, evaluate performance, and implement costs of different LID scenarios.
Keywords: Urban Stormwater Management, LID, SUSTAIN, Green infrastructure, NSGA-II algorithm -
In this study, the crushing behavior and energy absorption of various thin-walled structures under quasi-static loading are investigated. Some experimental data from similar work are used for the validation of a simulated model. Some samples are designed and considered with different combined geometries. It was found from simulated model that the most ability of specific energy absorption and crushing force efficiency are related to the circle-square sample. For the circle-square sample, the analytic equations for calculating the mean crushing force are obtained. The mean crushing force result is compared with the result of simulations, showing a good agreement. The multi-objective optimization process for the circle-square structure is performed using non-dominated sorting genetic algorithms for two statuses. The purpose of optimization is to increase the specific energy absorption and to decrease the peak crushing force, which causes the increase of the crushing force efficiency amount. The amount of specific energy absorption in the second status compared to the first status is improved by 17%. The amount of crushing force efficiency is improved by 12% after the optimization process.Keywords: Mean crush force, combined geometric, Optimization, NSGA-II algorithm, thin-walled
-
Research on topology control protocols in wireless sensor networks has often been designed with the goal of creating a dynamic topology and extensibility. The present study focuses on finding high quality paths, instead of minimizing the number of hops that can cause reduction of the received signal strength and maximizing the rate of loss. The purpose of this research is to create a topology control that focuses on reducing the fault and minimizing interference simultaneously. For this purpose, the fault rate and the degree of interference minimizing functions are modeled by using a two-objective genetic algorithm. Since the genetic algorithm is a revelation algorithm, the proposed method is compared in terms of convergence with similar algorithms. The obtained graphs show that the proposed algorithm has a good degree of convergence compared to similar models. The "runtime", "memory consumption" and "energy required to transmit the statement" are the variables used to compare with similar algorithms. By observing the obtained graphs, the proposed algorithm compared to similar methods, reduces the time needed for topology control and also it lowers the energy consumption, but is not able to reduce memory consumption for more packages. The main reason for conducting the test is the comparison of the quality of the routes created, which were executed in 20 different requests with the number of routes 5, 10 and 20. The quality of the routes produced by the proposed method has a 1% improvement over the SMG method and a 3% compared to the PSO method according to the route quality criteria.
Keywords: Topology Control, Fault Tolerance, Interference, Wireless Sensor Networks, NSGA-II Algorithm, Throughput -
Journal of Optimization in Industrial Engineering, Volume:12 Issue: 26, Summer and Autumn 2019, PP 149 -154In this research, a hierarchical location-allocation problem is modeled in a queue framework. The queue model is considered as M/M/1/k, in which system capacity is finite, equals to k. This is the main contribution of the current research. Customer's enters to the system in order to find the service according to a Poisson. In this problem, the hierarchical location-allocation model is considered in two levels. Also, the model has two objective functions: maximizing the total number of demand coverage and minimizing the waiting time of customers in queues to receive services. After modeling and verifying the validity of the presented model, it is solved using NSGA II and MOPSO meta-heuristics.Keywords: Location-Allocation Problems, Hierarchical Models, Multi-objective programming, Taguchi method, NSGA-II Algorithm, M-M-m Queuing Model
-
In this paper, developed a new multi-product, multi-period, and multi-level closed-loop green supply chain planning model under uncertain conditions. The formulated model consists of five objective functions, which minimize the cost of the supply chain, minimize the CO2 emission of transportation vehicles, maximize the reliability of manufacturing and distribution centers, maximize the reliability of the transportation system, and maximize the level of service provided. Therefore, the problem of model formulated as a multi-objective mixed integer nonlinear programming. Also, since the proposed model is complex and NP-hard in large size, therefore, for the investigation of the results, we have used a Non-Dominated Sorting Genetic II Algorithm (NSGA-II). In addition, the small of size results of the problem achieved by GAMS software. Therefore, we try to solve these problems by analyzing and comparing them with the help of these algorithm. For this purpose, various size has been considered.Keywords: Green Closed-loop Supply Chain, Uncertainty, Reliability, NSGA-II Algorithm
-
نشریه تحقیقات نوین در سیستم های قدرت هوشمند، سال هفتم شماره 1 (پیاپی 15، بهار و تابستان 1397)، صص 9 -16
در این مقاله یافتن مکان و اندازه بهینه تولیدات پراکنده به عنوان یک مسیله بهینه سازی مهندسی مطرح می شود، با توجه به یکپارچگی و نفوذ منابع تولید پراکنده در سیستم های توزیع، با استفاده از تعیین اندازه و جایابی بهینه آنها در شبکه های توزیع بر اساس توابع هدفی مانند: بهبود پروفیل ولتاژ، کاهش تلفات، افزایش قابلیت اطمینان، مهار نمودن رشد نیروگاه های مرکزی و. . . صورت می گیرد. اهداف مذکور به کمک الگوریتم NSGA-II با استراتژی خاموش درشبکه IEEE 33-BUS مورد بررسی و مطالعه قرار خواهد گرفت. برای پیاده سازی مفهوم جانشینی خاموش، دسته ای از DG ها درنظر گرفته می شود که در حالت عادی خاموش می باشند که در صورت وقوع خطا در شبکه یا فیدرها، DG های جانشین نیز روشن شده و برای بازیابی بارهای قطع شده استفاده می شوند تا باعث تحقق توابع هدف گردد. برای اندازه گیری قابلیت اطمینان از معیار انرژی تامین نشده مورد انتظار EENS استفاده شده است. برای بهینه سازی دو هدف کلی درنظر گرفته شده است که شامل:کاهش EENS وکاهش تلفات توان می باشد. علاوه بر اهداف ذکر شده، بهبود پروفیل ولتاژ نیز به صورت تابع جریمه اعمال شده است. شبیه سازی در محیط نرم افزار متلب صورت گرفته و نتایج حاصل از آن، اثر بخشی و کارایی الگوریتم پیشنهادی را نشان می دهد.
کلید واژگان: الگوریتم NSGA-II، منابع تولید پراکنده، جایابی بهینه، قابلیت اطمینان، پروفیل ولتاژin this Paper, Optimal placement and sizing of DGs is considered as an engineering optimization problem. Due to integration and influence of DGs in distributed networks, optimal location and sizing of them are done based on objective functions such as: voltage profile improvement, power loss reduction, reliability improvement, restraining the increase of power plant, etc. These goals considering the NSGA-II algorithm with cold standby strategy will be investigated and simulated on IEEE 33-bus standard test system. In order to implement the concept of Cold Standby theory, a group of DGs are considered which are off in normal condition but in fault condition, these DGs turn on and help to reconstruction the network. In order to measuring reliability, used the expected energy not supply (EENS) index. Optimization is done with two goals: reduction of EENS and the cost, including investment cost and power loss cost. Moreover, voltage profile improvement has been applied as a function penalty. Simulation has been done in MATLAB software and results show the effectiveness and capability of proposed algorithm.
Keywords: NSGA-II algorithm, distributed generation, optimal placement, reliability, voltage profile -
Journal of Operation and Automation in Power Engineering, Volume:6 Issue: 1, Winter - Spring 2018, PP 89 -100Although significant private investment is absorbed in different sectors of power systems, transmission sector is still suffering from appropriate private investment. This is because of the pricing policies of transmission services, tariffs, and especially for investment risks. Investment risks are due to the uncertain behaviour of power systems that discourage investors to invest in the transmission sectors. In uncertain environment of power systems, a proper method is needed to find investment attractive transmission lines with high investment return and low risk. Nowadays, wind power generation has a significant portion in total generation of most power systems. However, its uncontrollable and variable nature has turned it as a main source of uncertainty in power systems. Accordingly, the wind power generation can play a fundamental role in increasing investment risk in the transmission networks. In this paper, impact of this type of generation on investment risk and returned investment cost in transmission network is investigated. With different levels of wind power penetration, the recovered values of investment cost and risk cost in transmission network are calculated and compared. This is a simple method to find investment attractive lines in presence of uncertainties. Wherein, transmission network expansion planning (TNEP) is formulated as a multi-objective optimization problem with objectives of minimizing the investment cost, maximizing the recovered investment cost and network reliability. The point estimation method (PEM) is used to address wind speed variations at wind farms sites in the optimization problem, and the NSGA II algorithm is applied to determine the trade-off regions between the TNEP objective functions. The fuzzy satisfying method is used to decide about the final optimal plan. The proposed methodology is applied on the IEEE 24-bus RTS and simplified Iran 400 kV network.Keywords: Point Estimation Method, Private Investment, Transmission Network Expansion Planning, Wind power Generation, NSGA II algorithm
-
Transportation in the industrialized world plays an important role in the economic development of countries by enabling the consumption of products at very remote locations. Transportation costs are one of the most important parts of the finished products’ costs. In general, locating-routing-arc is highly important for industries that are heavily involved with the end customers such as the consumer product industries. In these industries, due to the insignificant difference between the products of the various companies, the maintenance of the market and the loyalty of customers depend on the timely availability of the required products. Hence, providing the customers ‘need at the right time and place with high level of responding is highly important to get customers’ satisfaction. In this study, the problem of locating-routing-arc is studied by using game theory. In the investigated problem, there are a number of demand points as customers, each of which has a specific demand (delivered, handover or return) of every type of products and each customer determines the delivery time for each product. To solve the Problem in Small dimensions, a mathematical model is presented in the form of the mixed integer, two-objective, multi-cyclic, and multi-commodity and for to solve the problem in big dimensions in the form of NP-HARD. The model is to test the validation of the proposed model, a ε-constraint method is used and Pareto solutions are calculated. Then due to the complexity of the problem in big dimensions. We used the meta-heuristics NSGA-II algorithm in cooperative and non-cooperative modes. Finally, the results if cooperative methods were used to allocate the amount of savings.Keywords: Locating, routing arc, ε-constraint method, NSGA-II algorithm
-
در این مقاله مساله تخصیص آگاه از کیفیت سرویس کانال در قالب یک مساله بهینه سازی با دو تابع هدف شامل بهره وری طیفی و انصاف میان کاربران ثانویه با در نظر گرفتن محدودیت های دسترسی کانال بررسی می شود. هر تخصیص امکان پذیر کانال به کاربر که می تواند پاسخ مساله بهینه سازی باشد به صورت یک کروموزوم دودویی کد می شود. کد کردن فرصت های طیفی دسترس پذیر به جای همه ترکیب های کانال- کاربر باعث کاهش قابل توجه فضای جستجو می شود. بر این اساس طرح تخصیص آگاه از کیفیت سرویس کانال مبتنی بر الگوریتم NSGA-II برای یافتن تخصیص بهینه با هدف بیشینه کردن توام هرکدام از توابع هدف به صورت هم زمان ارایه شده و در نهایت در فضای گسسته پاسخ های شدنی مساله، مجموعه پاسخ های بهینه پرتو به دست آمده است. نتایج شبیه سازی، نقاط بهینه و مصالحه بین بهره وری طیفی و انصاف میان کاربران را نشان می دهد. روش بهینه سازی با متغیرهای تصمیم گیری صحیح دودویی نتایج به دست آمده از طرح پیشنهادی مبتنی بر الگوریتم NSGA-II را در نمونه های مقیاس کوچک مساله تایید می کند در حالی که در نمونه های مقیاس بزرگ، طرح پیشنهادی از نظر پیچیدگی محاسباتی بسیار سریع تر عمل می کند.کلید واژگان: بهینه سازی با متغیرهای تصمیم گیری صحیح دودویی، رادیوی شناختگر، الگوریتم NSGA-II، بهینه سازی چندهدفه، تخصیص کانال آگاه از کیفیت سرویس، فرصت های طیفیIn this paper the QoS-aware channel allocation problem formulated as an optimization problem with two conflicting objectives; spectrum utilization and fairness among secondary users (SUs) subject to channel availabilities constraints. Any possible channel allocation which could be a solution of the optimization problem, encoded as a binary chromosome. By having coded available spectrum opportunities instead of all channel-user combinations, the search space is significantly reduced. Designing the QoS-aware channel assignment scheme is based on NSGA-II Algorithm to find the optimum allocation of these two objectives jointly and finally the set of Pareto optimal solutions achieved by proposed algorithm in discrete space of feasible solutions. Simulation results demonstrate the trade-off between spectrum utilization and fairness and the Pareto optimum points. Binary Integer Programming (BIP) confirms the results of the proposed evolutionary scheme in small-scale instances while our scheme outperforms BIP method significantly in computational for large-scale ones.Keywords: Binary Integer Programming, Cognitive radio, NSGA-II Algorithm, Multi-Objective Optimization, QoS-Aware Channel Assignment, Spectrum Opportunities
-
Ski jump is one of the most e ective structures in energy dissipation over spillways. Spillways have long been of practical importance to safety of dams. The major criteria in hydraulic design are based on the analytical and empirical methods. In the current study, in order to increase chute spillway eciency, a multi-objective evolutionary algorithm known as the Non-dominated Sorting Genetic Algorithm II (NSGA-II) has been utilized to design the optimal triangular bucket angle and chute width. In design method, two separate objective functions have been used. In the rst objective function, equations of dynamic pressure of the bucket, the jet length after bucket, and the scour depth have been used. The second objective function is related to construction volume of chute spillway. For calibrating the rst objective function, characteristics of Karoon III dam have been used as a case study. The di erence between design parameters of Karoon III spillway and those from NSGA-II algorithm method is less than 12 percent. According to the results, if the jet length is considered as the most impressive parameter in the rst objective function, design of the spillway becomes frugal.Keywords: Triangular ip bucket, Chute spillway width, Ski jump, NSGA-II algorithm, Karoon III dam
-
Journal of Optimization in Industrial Engineering, Volume:9 Issue: 19, Winter and Spring 2016, PP 87 -96in the new production systems, finding a way to improving the product and system reliability in design is a very important. The reliability of the products and systems may improve using different methods. One of this methods is redundancy allocation problem. In this problem by adding redundant component to sub-systems under some constraints, the reliability improved. In this paper we worked on a three objectives redundancy allocation problem. The objectives are maximizing system reliability and minimizing the system cost and weight. The structure of sub-systems are k-out-of-n and the components have constant failure rate. Because this problem belongs to Np. Hard problems, we used NSGA II multi-objective Meta-heuristic algorithm to solving the presented problem.Keywords: reliability, Redundancy allocation problem, multi, objectives problem, k, out, of, n, NSGA II algorithm
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.