به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

bi-level programming

در نشریات گروه برق
تکرار جستجوی کلیدواژه bi-level programming در نشریات گروه فنی و مهندسی
  • عبدالله راستگو*، سامان حسینی همتی

    در این مقاله مدلی برای برنامه ریزی توسعه شبکه توزیع انرژی الکتریکی ارائه می شود که مبتنی بر مدل بهینه سازی دوسطحی بوده و قادر است تعارض بین شبکه فشار متوسط توزیع و شبکه فشار ضعیف توزیع را در سایز و جایابی بهینه ترانسفورماتورها برطرف نماید. در مدل پیشنهادی سطح بالا شبکه فشار متوسط و سطح پایین شبکه فشار ضعیف است. در واقع تعارض بین دو سطح این است که هر سطح تمایل دارد که مکان و سایز ترانسفورماتورها را مطابق میل خود تعیین کند. بنابراین، در این مقاله سعی شده است که با ارائه مدلی دوسطحی این تعارض که همان سایز و مکان ترانسفورماتورها است را برطرف نموده و به نقطه بهینه ای دست یافت که مطابق میل هر دو سطح باشد. تابع هدف سطح اول معیار پایداری ولتاژ و تابع هدف سطح دوم کاهش هزینه های بهره برداری و سرمایه گذاری با لحاظ کردن منابع تولید پراکنده است. از آنجا که مدل موردنظر غیرخطی است با استفاده از الگوریتم جستجوی ممنوعه با تجزیه مدل به دو زیر مسئله به حل آن پرداخته می شود. به منظور نشان دادن کارایی مدل پیشنهادی، در سه سناریو متفاوت مسئله موردنظر حل و مقایسه های لازم صورت می گیرد.

    کلید واژگان: برنامه ریزی شبکه توزیع، برنامه ریزی دوسطحی، الگوریتم جستجوی ممنوعه، پایداری ولتاژ
    A. Rastgou *, S. Hosseini-Hemati

    In this paper, a model for distribution network expansion planning is presented, which is based on a bi-level model and can resolve the conflict between the medium and low voltage distribution networks in the size and optimal placement of transformers. In the proposed model, the upper and lower levels are medium and low voltage networks, respectively. The conflict between the two levels is that each network tends to determine the location and size of the transformers according to their wishes. Therefore, this paper has tried to solve this conflict, which is the size and location of transformers, by presenting a bi-level model, and to reach an optimal point that is in accordance with the desire of both levels. The objective function of the first level is the voltage stability criterion and the objective function of the second level is to reduce the operating and investment costs by considering distributed generations. Since the desired model is non-linear, it is solved using the tabu search by splitting the model into two sub-problems. To show the effectiveness of the proposed model, the problem is solved in three different scenarios and necessary comparisons have been made.

    Keywords: Distribution Network Planning, Bi-Level Programming, Tabu Search, Voltage Stability
  • Z. Kaheh, R. Baradaran Kazemzadeh *, E. Masehian, A. Husseinzadeh Kashan
    In this paper, a mathematical negotiation mechanism is designed to minimize the negotiators’ costs in a distributed procurement problem at two echelons of an automotive supply chain. The buyer’s costs are procurement cost and shortage penalty in a one-period contract. On the other hand, the suppliers intend to solve a multi-period, multi-product production planning to minimize their costs. Such a mechanism provides an alignment among suppliers’ production planning and order allocation, also supports the partnership with the valued suppliers by taking suppliers’ capacities into account. Such a circumstance has been modeled via bi-level programming, in which the buyer acts as a leader, and the suppliers individually appear as followers in the lower level. To solve this nonlinear bi-level programming model, a hybrid algorithm by combining the particle swarm optimization (PSO) algorithm with a heuristic algorithm based on A* search is proposed. The heuristic A* algorithm is embedded to solve the mixed-integer nonlinear programming (MINLP) sub-problems for each supplier according to the received variable values determined by PSO system particles (buyer’s request for quotations (RFQs)). The computational analyses have shown that the proposed hybrid algorithm called PSO-A* outperforms PSO-SA and PSO-Greedy algorithms.
    Keywords: Decentralized Decision Making, Procurement Problem, Bargaining Power, Bi-Level Programming, PSO-A* Algorithm
  • نوید تقی زادگان کلانتری *

    ادغام منابع تولید پراکنده در یک مجموعه واحد توسط نیروگاه های مجازی قابل اجراست. نیروگاه مجازی مجموعه ای از منابع قابل برنامه ریزی و غیر قابل برنامه ریزی به همراه بارهای انعطاف پذیراست که در سراسر شبکه پخش شده و در حالت تجمیع شده به صورت یک نیروگاه مدل سازی می شود. بار انعطاف پذیر با تغییر مصرف و اعمال برنامه های پاسخگویی بار میتواند سبب تقویت عملکرد سیستم قدرت شود. تولید نیروگاه مجازی دارای عدم قطعیت بوده و برنامه ریزی آن با دشواری همراه است. برای رفع این مشکل از تیوری شکاف ازاطلاعاتی استفاده شده است. برای بررسی تاثیر نیروگاه های مجازی با در نظر گرفتن برنامه پاسخگویی بار روش برنامه ریزی دو مرحله ای نیروگاه ها در شبکه 24 باسه IEEE پیاده سازی شده است. نتایج بدست آمده در دوحالت با و بدون در نظر گرفتن نیروگاه های مجازی و برنامه پاسخگویی بار با یکدیگیر مقایسه شده و کارایی روش پیشنهادی نشان داده شده است.

    Y. Babaei Shahmars, J. Salehi *, N. Taghizadegan Kalantari

    The integration of the distributed energy resources into a single entity can do with virtual power plants. VPP is a cluster of dispatchable and non- dispatchable resource with flexible loads which distributed in allover the grid that aggregated and acts as a unique power plant. Flexible load is able to change the consumption so demand response program is applied to use them to improvement of the power system performance. Virtual power plant generation has uncertainty and it make hard to schedule the VPP. To deal this matter Information gap decision theory hint us to optimal schedule of the VPP. To show the effects of VPP and DRP on power system operation cost a bi-level unit commitment with regard the VPPs and DRP is solved in modified IEEE 24 bus reliability test system. Results in presence of VPP and DRP in both IGDT strategies are compared with disregard VPP and DRP and effectiveness of the proposed model is reflected.

    Keywords: Virtual Power Plants, Demand Response Programming, Unit commitment, Bi-Level Programming, Information Gap Decision
  • Zohreh Kaheh, Reza Baradaran Kazemzadeh *, MohammadKazem Sheikh El Eslami

    In this paper, we focus on solving the integrated energy and flexiramp procurement problem in the day-ahead market. The problem of energy and ramp procurement could be perfectly analyzed through Stackelberg concept, because of its hierarchical nature of the decision-making process. Such a circumstance is modeled via a bi-level programming, in which suppliers act as leaders and the ISO appear as the follower. The ISO intends to minimize the energy and spinning reserve procurement cost, and the suppliers aim to maximize their profit. To solve the proposed model, a fuzzy max-min approach is applied to maximize the players’ utilities. The objectives and suppliers’ dynamic offers, determined regarding the market clearing prices, are reformulated through fuzzy utility functions. The proposed approach is an effective and simple alternative to the KKT method, especially for problems with non-convex lower-level.

    Keywords: Integrated Energy, Flexiramp Market, Bi-level Programming, Fuzzy Max-Min, Dynamic Pricing
  • Atefeh Hassanpour, Jafar Bagherinejad *, Mahdi Bashiri
    This study aims in providing a new approach regarding design of a closed loop supply chain network through emphasizing on the impact of the environmental government policies based on a bi-level mixed integer linear programming model. Government is considered as a leader in the first level and tends to set a collection rate policy which leads to collect more used products in order to ensure a minimum distribution ratio to satisfy a minimum demands. In the second level, private sector is considered as a follower and tries to maximize its profit by designing its own closed loop supply chain network according to the government used products collection policy. A heuristic algorithm and an adaptive genetic algorithm based on enumeration method are proposed and their performances are evaluated through computational experiences. The comparison among numerical examples reveals that there is an obvious conflict between the government and CLSC goals. Moreover, it shows that this conflict should be considered and elaborated in uncertain environment by applying Min-Max regret scenario based robust optimization approach. The results show the necessity of using robust bi-level programming in closed loop supply chain network design under the governmental legislative decisions as a leader-follower configuration.
    Keywords: Bi-level Programming, Closed-loop supply chain, Government regulations, Genetic Algorithm, robust optimization, Scenario
  • Bardia Behnia, Iraj Mahdavi *, Babak Shirazi, Mohammad Mahdi Paydar
    The present study aimed to design a bi-objective bi-level mathematical model for multi-dimensional cellular manufacturing system. Minimizing the total number of voids and balancing the assigned workloads to cells are regarded as two objectives of the upper level of the model. However, the lower level attempts to maximize the workers' interest to work together in a special cell. To this aim, two nested bi-level metaheuristics including particle swarm optimization (NBL-PSO) and a population-based simulated annealing algorithm (NBL-PBSA) were implemented to solve the model. In addition, the goal programming approach was utilized in the upper level procedure of these algorithms. Further, nine numerical examples were applied to verify the suggested framework and the TOPSIS method was used to find the better algorithm. Furthermore, the best weights for upper level objectives were tuned by using a weight sensitivity analysis. Based on computational results, all three objectives were different from their ideal goals when decisions about inter and intra-cell layouts, and cell formation to balance the assigned workloads by considering voids and workers' interest were simultaneously madeby considering a wide assumption-made problem closer to the real world. Finally, NBL-PBSA could perform better than NBL-PSO, which confirmed the efficiency of the proposed framework.
    Keywords: Cellular Manufacturing, Bi-level Programming, bi-objective optimization, Goal Programming, Evolutionary Algorithms, TOPSIS method
  • F. Zaheri *, M. Zandieh, M.T. Taghavifard
    This paper proposes two models to formulate a Supplier Selection Problem (SSP) in a single-buyer, multi-supplier two-echelon supply chain network. The model coordinates order allocation and supplier selection problems under all-unit quantity discount policy. In this way, bi-level programming is employed to obtain two models: 1) The model with buyer as a leader; 2) The model with vendor as a leader. The resulted nonlinear bi-level programming problems are hard to solve. Therefore, Particle Swarm Optimization (PSO) algorithm is used to deal with the complexity of the model and makes it solvable. Numerical results show that the proposed model is ecient for SSP in compliance with order allocation decision making.
    Keywords: Supply chain, Bi-level programming, Supplier selection, PSO
  • Ashkan Hafezalkotob, Saba Borhani, Soma Zamani
    Globalization, increased governmental regulations, and customer demands regarding environmental issues has led organizations to review measures necessary for implementation of supply chain management, in order to improve environmental and economic performance. In this study, a competitive market is considered consisting of product producers and raw material suppliers with a focus on automotive industry. This research also utilizes the rules of Oligopoly and Cournot games to compete with each other and to achieve greater profits. In other words, price of a product is a function of market demand. In this regard, a nonlinear bi-level model is proposed at its first level of which, the government controls environmental pollution to maximize its net income. In the second level, the main objective is to maximize the profit of each Green Supply Chain member’s. The bi-level model is converted to a single level model by replacing the second level with its Karush Kuhn Tucker conditions and linearization techniques. Subsequently, a Genetic Algorithm is utilized to solve the single level model using MATLAB software. Afterwards, the obtained results are compared with optimal solutions acquired by Enumerative method (EM) to evaluate validity and feasibility of the proposed Genetic Algorithm. A sensitivity analysis of this model indicates that fiscal policy of the government heavily impacts reduction of environmental pollution costs caused by industrial activities such as automobile production in a competitive market. Therefore, the amount of taxes for non-green products is directly related to reduction of the environmental pollution.
    Keywords: Supply Chain, Bi Level Programming, Game Theory, Oligopolistic Competition, Genetic Algorithm
  • سهیل امامیان، سید غلامرضا جلالی نایینی، کامران شهانقی
    در کشورهای در حال توسعه، به دلیل کمبود منابع مالی در تامین سرمایه مورد نیاز پروژه های زیر بنایی ، توجه خاصی برای جذب منابع مالی به بخش خصوصی داخلی و خارجی جلب شده است. یکی از این رویکردها روش ساخت-بهره برداری-واگذاری (BOT) است. در اینگونه رویکردها پروژه به بخش خصوصی واگذار شده و بخش خصوصی باید پروژه را به اتمام رسانده و سود خود را بدست بیاورد و پس از این مرحله پروژه را به دولت واگذار نماید .
    در این مقاله چار چوبی جهت تعیین طول دوره امتیاز و نقطه انتقال پروژه با در نظر گرفتن تمایلات دو طرف و با وارد نمودن اثرات ریسک و عدم قطعیت در خصوص پارامترهای پروژه و در نظر گرفتن عدم وجود اطلاعات کامل حداقل برای یکی از طرفین و با استفاده از نظریه بازی چانه زنی و شبیه سازی مونت کارلو ، دوره امتیاز و نقطه انتقال با توجه به مطالعه موردی که در خصوص ساخت نیرو گاه برق میباشد ارائه گردیده است.
    کلید واژگان: ساخت، بهره برداری، واگذاری، دوره امتیاز، ارزش خاص فعلی، پایان عمر اقتصادی پروژه، برنامه ریزی دو سطحی، شبیه سازی مونت کارلو
    Sohel Emamiam, Sayed Gholamreza Jalalinaeeni Sayed Gholamreza Jalalinaeeni, Kamran Shahnaghi
    In the developing countries, there is an interest to attract investments in private and foreign sectors due to the lack of financial resource required for infrastructure projects. Build-Operate-Transfer (BOT) method is one of the approaches in which the private sector is assigned to construct the project and gains its own interest after which it transfers the project to the government. In this paper, according to the proposed case study, a method was obtained to determine the concession period length and the transfer point of project by taking into account both partie's willingness, effects of risks and uncertainty regarding the project's parameters, considering the lack of complete information at least for one party by using bargaining game theory and Monte-Carlo simulation.
    Keywords: Build, Operate-Transfer (BOT), concession period, net present value, economical lifetime of the project, bi-level programming, Monte-Carlo simulation
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال