hybrid algorithm
در نشریات گروه برق-
در این مقاله، سه الگوریتم فراابتکاری شناخته شده شامل الگوریتم بازار بورس، الگوریتم تکامل پیچ درهم و الگوریتم زنبور ملکه به منظور ارائه سه الگوریتم تکاملی ترکیبی جدید با نام های EMA-QB، EMA-SCE و EMA-SCE-QB مورد بررسی قرار گرفته اند. به منظور تحلیل و ارزیابی کارایی و اثربخشی این الگوریتم های ترکیبی، عملکرد آن ها با الگوریتم های EMA، SCEو QB در حل 12 تابع محک با تعداد متغیرهای 10، 20، 30 و 50 مقایسه شده است. نتایج نشان می دهد که ترکیب الگوریتم ها منجر به بهبود عملکرد در جستجوی نقطه بهینه از نظر دقت و زمان شده است، به گونه ای که این بهبود با افزایش تعداد متغیرها ملموس تر می شود. در نهایت، مجموع زمان اجرای الگوریتم ها، کمینه مقدار توابع هدف، و تعداد تکرارهای لازم برای بهینه سازی تمامی توابع مورد بررسی، در قالب چهار نمودار برای هر تعداد متغیر به تصویر کشیده شده اند که نشان دهنده موفقیت الگوریتم های ترکیبی پیشنهادی است.
کلید واژگان: الگوریتم ترکیبی، الگوریتم بازار بورس، الگوریتم زنبور ملکه، تکامل مختلط تصادفیIn this paper, three popular algorithms, including the Exchange Market Algorithm (EMA), the Shuffled Complex Evolution (SCE) algorithm, and the Queen Bee (QB) algorithm, are considered to propose three new hybrid evolutionary algorithms named EMA-QB, EMA-SCE, and EMA-SCE-QB. Then, to analyze and validate the effectiveness and efficiency of these new algorithms, we compared their performance with the performance of EMA, SCE, and QB algorithms on 12 benchmark functions with 10, 20, 30, and 50 variables. It is deduced that hybridization has presented a better performance in optimum seeking from both time and accuracy points of view, which become more distinctive as the number of variables grows. Finally, the sum of run times, minimum value of cost functions, and the number of iterations obtained from the procedure of optimization of all functions using the considered algorithms are illustrated in four graphs for each number of variables, which prove the success of the proposed hybrid algorithms.
Keywords: Hybrid Algorithm, Exchange Market Algorithm, Queen Bee Algorithm, Shuffled Complex Evolution -
Scientia Iranica, Volume:29 Issue: 6, Nov-Dec 2022, PP 2995 -3015This paper presents a new hybrid algorithm generated by combining advantageous features of the Imperialist Competitive Algorithm (ICA) and Biogeography Based Optimization (BBO) to create an effective search technique. Although the ICA performs fairly well in the exploration phase, it is less effective in the exploitation stage. In addition, its convergence speed is problematic in some instances. Meanwhile, the BBO method's migration operator strongly emphasizes local search to focus on promising solutions and finds the optimum solution more precisely. The combination of these two algorithms leads to a robust hybrid algorithm that has both exploratory and exploitative functionalities. The proposed hybrid algorithm is named Migration-Based Imperialist Competitive Algorithm (MBICA). To validate its performance, MBICA is used to optimize a variety of benchmark truss structures. Compared to some other methods, this algorithm converges to better or at least identical solutions by reducing the number of structural analyses. Finally, the results of the standard BBO, ICA, and other recently developed metaheuristic optimization methods are compared with the results of this study.Keywords: Hybrid algorithm, Imperialist competitive algorithm, Biogeography-based optimization, meta-heuristic algorithms, Optimum design, Truss structures design, Structural optimization
-
هدف از برنامه ریزی تولید در یک پالایشگاه، تولید هرچه بیشتر محصولات با ارزش مانند بنزین، سوخت جت، گازوییل و غیره و درعین حال تامین تقاضای بازار و سایر محدودیت ها است. پالایش نفت خام یکی از پیچیده ترین صنایع شیمیایی است ؛ بنابراین بهینه سازی برنامه ریزی تولید یک پالایشگاه نفت به عنوان یکی از دشوارترین و چالش برانگیزترین مسایل در این حوزه به شمار می رود. با توجه به تغییرات سریع در فن آوری های مرتبط با این صنعت همچون ساخت کاتالیست های جدید، طراحی واحدهای فرآیندی انعطاف پذیرتر، انعطاف پذیری پالایشگاه ها به سرعت در حال افزایش است. با افزایش انعطاف پذیری پالایشگاه ها، برنامه ریزی تولید آنها نیازمند داشتن یک مدل ریاضی است که به کمک آن بتوان در زمان مناسب بهترین تصمیم را برای برآورده کردن تقاضاهای موجود در بازار با کمترین هزینه تولید را اتخاذ نمود. در این مقاله، برنامه ریزی تولید یک پالایشگاه انعطاف پذیر به کمک روابط ریاضی بین پارامترهای کلانی همچون تقاضای محصولات، وضعیت های تولید، هزینه های ثابت و متغیر تولید و هزینه های نگهداشت فرآورده های نفتی مدل سازی و برای حل آن یک روش ترکیبی حاصل از تلفیق الگوریتم ژنتیک و روش ثابت سازی-بهینه سازی ارایه شده است. نتایج تحقیق به کمک 63 مسیله شبیه سازی شده در ابعاد کوچک، متوسط و بزرگ نشان می دهد که جواب نزدیک بهینه حاصل از روش ترکیبی به صورت میانگین در ابعاد کوچک و متوسط به ترتیب 23/0 و 12/0 درصد از جواب دقیق مسیله انحراف دارد. همچنین در ابعاد بزرگ که امکان محاسبه جواب دقیق توسط کامپیوتر وجود نداشت، این الگوریتم به طور میانگین در 87 ثانیه به جواب می رسد.
کلید واژگان: برنامه ریزی تولید، پالایشگاه نفت، انعطاف پذیری، الگوریتم ژنتیک، الگوریتم ثابت سازی- بهینه سازی، الگوریتم ترکیبیThe goal of production planning in a refinery is to produce as many valuable products as possible such as gasoline, jet fuel, diesel, etc., while meeting market demand and other constraints. Crude oil refining is one of the most complex chemical industries; Therefore, optimizing the production planning of an oil refinery is considered as one of the most difficult and challenging issues in this field. Due to rapid changes in industry-related technologies such as the construction of new catalysts, the design of more flexible process units, the flexibility of refineries is increasing rapidly. With the flexibility of refineries, their production planning requires a mathematical model that can be used to make the best decision at the right time to meet market demand at the lowest production cost. In this paper, the production planning of a flexible refinery is modeled using mathematical relationships between macro parameters such as product demand, production conditions, fixed and variable production costs, and inventory costs of petroleum products. To solve it, a hybrid algorithm of combining genetic algorithm and fix and optimize is proposed. The results with using of 63 simulated problems in small, medium and large dimensions show that the near-optimal solution obtained from the hybrid method deviates 0.23 and 0.12 percent of the exact solution of the problem on average in small and medium dimensions respectively. Also in large dimensions where it was not possible to calculate the exact answer by the computer, this algorithm can answer in an average of 87 seconds.
Keywords: Production Planning, Oil Refinery, Flexibility, Genetic algorithm, Fix, Optimize Algorithm, Hybrid Algorithm -
در این مقاله، یک الگوریتم ترکیبی چندهدفه ارایه شده است که ویژگی های دو الگوریتم ژنتیک و کرم شب تاب را ترکیب می کند. این الگوریتم با مجموعه ای از کرم های شب تاب که در فضای مسئله به صورت تصادفی پخش می شوند، شروع به کار می کند و این ذرات طی مراحل تکامل، به جواب بهینه مسئله همگرا می شوند. سپس یک طرح جست وجوی محلی به عنوان روشی برای جست وجوی همسایگی به منظور بهبود کیفیت جواب ها ارایه و پیاده سازی شده است. این بخش از الگوریتم برای جست وجوی نواحی کم جمعیت، برای یافتن جواب های غالب استفاده می شود. برای بهبود الگوریتم تغییراتی در معیار تعیین بهترین بهینه سراسری به ازای هر کرم شب تاب و همچنین بهترین بهینه محلی اعمال شده است. استفاده از این روش موجب شده یکنواختی منحنی پرتو بیشتر شود. نتایج آزمایشگاهی روش ارایه شده بر روی برخی از توابع محک نشان می دهد که به کارگیری این روش موجب کاهش خطا شده است. الگوریتم پیشنهادی بر اساس یک الگوریتم پایه توسعه داده شده است.
کلید واژگان: الگوریتم تکاملی کرم شب تاب چندهدفه، الگوریتم ژنتیک، جست وجوی محلی، بهینه سازی پیوستهIn this paper, a hybrid multi-objective algorithm consisting of features of genetic and firefly algorithms is presented. The algorithm starts with a set of fireflies (particles) that are randomly distributed in the solution space; these particles converge to the optimal solution of the problem during the evolutionary stages. Then, a local search plan is presented and implemented for searching solution neighbors to improve the quality of global solutions. This part of the algorithm is used to search sparsely populated areas for finding the dominant solutions. To improve the algorithm, for each firefly some changes have been made on the criteria of determining the global optimal solution and doing local optimal solution; this leads to more uniformity of the Pareto curve and error reduction, as the experimental results show. The proposed algorithm is an extension of a basic algorithm.
Keywords: Firefly algorithm, Genetics algorithm, Local search, multi-objective algorithm, Hybrid algorithm -
Scientia Iranica, Volume:25 Issue: 6, Nov - Dec 2018, PP 3713 -3722This study considers a novel class of bi-level fuzzy random programming problem about insuring critical path. In this study, each task duration is assumed as a fuzzy random variable and follows the known possibility and probability distributions. Because there doesn’t exist an effective way to solve the problem directly, we first reduce the chance constraint to two equivalent random subproblems under two kinds of different risk attitudes. Then, we may use sample average approximation (SAA) method for reformulating the equivalent random programming subproblems as their approximation problems. Since the approximation problems are also hard to be solved, we explore a hybrid genotype phenotype binary particle swarm optimization algorithm (GP-BPSO) for resolving two equivalent subproblems, where dynamic programming method (DPM) is used for finding the solution in the lower level programming. At last, a series of simulation examples are performed for demonstrating the validity of the hybrid GP-BPSO compared with the hybrid BPSO algorithm.Keywords: Insuring critical path, Bi-level fuzzy random programming, Hybrid algorithm, Dynamic programming method, Task duration, Project management problem, Sample average approximation
-
Scientia Iranica, Volume:25 Issue: 4, 2018 Jul-Aug, PP 2331 -2346This study considers a multi-product multi-machine economic production quantity inventory problem in an imperfect production system that produces two types of defective items: items that require rework and scrapped items. The shortage is allowed and fully backordered. The scrapped items are disposed with a disposal cost and the rework is done at the end of the normal production period. Moreover, a potential set of available machines for utilization is considered such that each has a specific production rate per item. Each machine has its own utilization cost, setup time and production rate per item. The considered constraints are initial capital to utilize machines and production floor space. The proposed inventory model is a mixed integer non-linear programing mathematical model. The problem is solved using a bi-level approach, first, the set of machines to be utilized and the production allocation of items on each machine are obtained thru a genetic algorithm. Then, using the convexity attribute of the second level problem the optimum cycle length per machine is determined. The proposed hybrid genetic algorithm outperformed conventional genetic algorithm and a GAMS solver, considering solution quality and solving time. Finally, a sensitivity analysis is also given.Keywords: EPQ, defective item, MINLP, shortage, Hybrid algorithm
-
یکی از مسائل مهم در بهره برداری بهینه از سیستم قدرت، بهره برداری بهینه از ریزشبکه ها با در نظر گرفتن مدیریت سمت تقاضا است. اجرای برنامه های مدیریت سمت تقاضا از یک طرف باعث کاهش هزینه بهره برداری از سیستم قدرت گردیده و از طرف دیگر اجرای این گونه برنامه ها نیاز به سیاستهای تشویقی مالی دارد. در این مقاله مسئله بهره برداری بهینه از ریزشبکه ها به همراه مدیریت سمت تقاضا به صورت یک مساله بهینه سازی فرمول بندی گردیده است. جابجایی بار به عنوان یک راهکار موثر در مدیریت سمت تقاضا در نظر گرفته شده است. تابع هدف این مساله، حداقل کردن مجموع هزینه های بهره برداری از سیستم قدرت و هزینه جابجایی بار بوده و قیود مساله شامل قیود بهره برداری و محدودیتهای اجرایی برای جابجایی بار است. در این مساله میزان جابجایی بارها برحسب ساعت به عنوان متغیرهای مسئله در نظر گرفته شده و برای حل این مساله، از ترکیب الگوریتم ژنتیک و الگوریتم پخش بار بهینه استفاده شده است. روش پیشنهادی به یک ریزشبکه نمونه اعمال شده و نتایج نشان داد که با مدیریت سمت تقاضا می توان هزینه کل بهره برداری از یک ریزشبکه را کاهش داد.کلید واژگان: بهره برداری بهینه، ریزشبکه، مدیریت سمت تقاضا، الگوریتم ترکیبیOne of the major problem in the optimal operation of the power system is optimal operation of microgrid with regard to the Demand-side-management. From one side, demand-side-management programs reduce the operating costs of the power system and on the other hand, the implementation of these programs requires a financial incentive policies. In this paper, optimal operation of microgrid with demand-side-management is formulated as an optimization problem. Load shifting is taken into account as an effective tool for demand-side management. The objective function of this problem is consist of the minimization of total operation cost of the power system and the load shifting cost. The constraints of the problem include operational constraints and load shifting constraints. In this problem, the time of load shifting is considered as decesion variables. In order to solve the optimization problem, the combination of genetic algorithm and optimal power flow algorithm has been used. The proposed method is applied to a samples microgrid and the results showed that with the help of demand-side-management, the total cost of utilizing a microgrid can be reduced.Keywords: Optimal operation, microgrid, demand side management, hybrid algorithm
-
Journal of Artificial Intelligence and Data Mining, Volume:6 Issue: 1, Winter-Spring 2018, PP 59 -67The human has always been to find the best in all things. This Perfectionism has led to the creation of optimization methods. The goal of optimization is to determine the variables and find the best acceptable answer Due to the limitations of the problem, So that the objective function is minimum or maximum. One of the ways inaccurate optimization is meta-heuristics so that Inspired by nature, usually are looking for the optimal solution. in recent years, much effort has been done to improve or create metaheuristic algorithms. One of the ways to make improvements in meta-heuristic methods is using of combination. In this paper, a hybrid optimization algorithm based on imperialist competitive algorithm is presented. The used ideas are: assimilation operation with a variable parameter and the war function that is based on mathematical model of war in the real world. These changes led to increase the speed find the global optimum and reduce the search steps is in contrast with other metaheuristic. So that the evaluations done more than 80% of the test cases, in comparison to Imperialist Competitive Algorithm, Social Based Algorithm , Cuckoo Optimization Algorithm and Genetic Algorithm, the proposed algorithm was superior.Keywords: Optimization Method, Imperialist Competitive Algorithm, Meta-heuristic Algorithm, Hybrid Algorithm
-
The aim of the present paper is to propose a locationallocation model, for a capacitated health care system. This paper develops a discrete modeling framework to determine the optimal number of facilities among candidates and optimal allocations of existing customers for operating health centers in a coverage distance, so that the total sum of customer and operating facility costs are minimized.Our goal is to create a model that is more practical in the real world. Therefore, setup costs of the hospitals are based on the costs of customers, fixed costs of establishing health centers and costs based on theavailable resources in each level of hospitals.In this paper, the idea of hierarchical structure has been used. There are two levels of service in hospitals including low and high levels and sections at different levels that provide different types of services. The patients are referred to the hospitals different sections according to their requirements. To solve the model, two meta-heuristic algorithms, including genetic algorithm, simulated annealing and their combination are proposed. To evaluate the performance of the three algorithms, some numerical examples are produced and analyzed using the statistical test in order to determine which algorithm works better.Keywords: Health care system, Mixed, integer programming, Queuing theory, Capacitated system, Genetic algorithm, Simulated annealing algorithm, Hybrid algorithm
-
Journal of Artificial Intelligence in Electrical Engineering, Volume:5 Issue: 19, Autumn 2016, PP 39 -46This article proposes a new planning navigation strategy for use with mobile terrestrial robots. The proposed algorithm is applicable in any point of the areas for tasks such as cleaning the floors of building, mowing and clearing mined areas. The strategy of this algorithm is analyzed and checked in conditions where the environment and the obstacles are known. There are various routing algorithms such as A*, Genetic, Dijkstra, antcolony and etc, but any of the main algorithms is not singly the optimum one and all of them have some disadvantages. The proposed algorithm reduces the number of required repetitions to passing the routes by a combination of good characteristics of the main algorithms; after each movement event, the robot passing through all eight directions of source node according to specified fitness function, traverses the intended area at each repetition that the cost of each node is the distance of that node from the source. In this article, some problems presented and finally, the proposed algorithm in comparison with the algorithm of Roomba made by iRobot Corporation, has been checked by the observation and test method and their response has been obtained. In the path of achieving to the response by using the presented algorithm, some pseudo-codes have been designed in the C# environment.Keywords: hybrid algorithm, Area traverse, Optimum traverse, Roomba
-
یکی از وظایف اپراتور مستقل سیستم و یا اپراتور بازار، دریافت پیشنهادات سمت عرضه و تقاضا به منظور تعیین برنامه ریزی نیروگاه ها در سمت عرضه، برنامه ریزی توان مصرفی مشتریان و قیمت برق در دوره برنامه ریزی دربردارنده چندین بازه زمانی است. معیار اصلی اپراتور مستقل سیستم، حداکثرشدن رفاه اجتماعی بازیگران است. برای این منظور لازم است علاوه بر تابع هزینه سمت عرضه، تابع منفعت سمت مصرف نیز در تابع هدف گنجانده شود. در این مقاله، الگوریتم بهینه سازی ترکیبی جدیدی مبتنی بر الگوریتم غذایابی باکتری و تکامل تفاضلی برای حل مسئله پخش بار اقتصادی دینامیکی - زیست محیطی مبتنی بر حداکثر رفاه اجتماعی ارائه شده است. الگوریتم ترکیبی ارائه شده علاوه بر جست وجو در یک فضای گسترده برای دستیابی به پاسخ بهینه کلی، سرعت همگرایی پذیرفتنی را نیز داراست. برای نشان دادن کارایی الگوریتم، چندین سیستم تست بررسی شده است و نتایج به دست آمده با دیگر روش ها مقایسه شده است. نتایج نشان دهنده برتری روش پیشنهادی نسبت به دیگر روش هاست.کلید واژگان: الگوریتم غذایابی باکتری و تکامل تفاضلی، پخش بار اقتصادی دینامیکی، پیشنهاد سمت مصرفIn an electricity market¡ all market players¡ generating companies and large customers¡ submit their bids to market operator. Then using the aggregated supply/demand curve¡ the market operator determines the market prices and the schedules the supply of generating companies and the demand level of customers within the planning horizon to maximize the social profit. In this paper¡ a new hybrid optimization algorithm based on bacterial foraging and differential evolution algorithm is presented to solve the bid-based environmental-dynamic economic dispatch. The hybrid algorithm performs search through a stochastic gradient search with adaptive movement operation that has been coupled with differential evolution mutation and crossing over of the optimization agents. Simulation results on different case studies show that the performance of the purposed method is better than previous methods in convergence speed¡ stability and precisionKeywords: Bid, based, Environmental, Dynamic economic dispatch, Bacterial foraging algorithm, Differentials evolution algorithm, hybrid algorithm
-
This with the integration of distributed generation (DG) to meshed distribution systems, the operating time of the protective system becomes a major concern in order to avoid nuisance DG tripping. This paper proposes a new tripping characteristic for directional overcurrent relays (DOCRs) that can achieve a higher possible reduction of overall relays operating time in meshed distribution networks tripping. The proposed tripping characteristic is described in detail. The proposed characteristic is tested on the distribution system is a part of a distribution network, owned by Himmerlands Elforsyning, in Aalborg, Denmark. Also, in this paper using hybrid algorithm GA and LP for solve relay coordination problem. Also, in this paper fault considered is kind of three phase fault. Finally, the results of the proposed characteristic compared with a standard IEC characteristic. The result shown that propose characteristic are better than standard IEC characteristic. Therefore, we can use this characteristic for DOCRs.Keywords: overcurrent relay, Hybrid algorithm, relay characteristic
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.