به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

optimized convolutional neural network

در نشریات گروه برق
تکرار جستجوی کلیدواژه optimized convolutional neural network در نشریات گروه فنی و مهندسی
تکرار جستجوی کلیدواژه optimized convolutional neural network در مقالات مجلات علمی
  • Mohammad Fatehi *, Mehdi Taghizadeh, Mohammad Moradi, Gholamhosein Shojaat
    According to the report of the World Health Organization, corona disease is the most dangerous and contagious disease in the world. Currently, the most common method used to diagnose corona disease is the polymer chain reaction laboratory technique of reverse transcription, but since this method requires time to confirm the presence of the virus in the laboratory and also due to the unavailability of diagnostic kits and its high costs, Suspected corona virus patients cannot be identified and treated in time; This, in turn, can increase the likelihood of spreading the disease.Another diagnostic method is the use of X-ray chest imaging technique as well as chest computed tomography scan. Also, the use of deep learning methods can be very important for faster and more accurate diagnosis of the lung problems of the corona virus.In this study, using optimized deep convolutional networks based on X-ray images, patients with corona virus were diagnosed.In this article, using the optimized convolutional neural network of healthy people and those with corona, with 10-Fold cross-validation, average accuracy of 98.9% and average sensitivity of 96.5% were obtained.According to the obtained results, it can be said that the proposed method has the ability to separate healthy and unhealthy signals with acceptable accuracy.
    Keywords: deep learning, optimized convolutional neural network, X-ray images, Covid 19 disease
  • MohammadHosein Fatehi, Mehdi KHajooee, Nahid Adlband, MohammadMahdi Moradi

    According to the information of the World Health Organization, today heart diseases are considered the most important threat to humans and are the first cause of death in the world. According to the latest global statistics, 46% of deaths are related to the heart. According to reports and research, a large number of causes of death are caused by heart diseases, while 25% of cases are reversible. Correct and timely diagnosis of patients with acute heart problems can largely prevent sudden death and further problems.Due to the fact that recording an electrocardiogram is inexpensive and fruitful, the use of an electrocardiogram can help a lot in many heart diseases and other diseases.Deep learning is one of the new methods with high accuracy in diagnosis and classification, which is based on the convolutional neural network.Convolutional neural networks have a very high processing and training time, which can be optimized and reduced in order to reduce the time, so that acceptable results can be obtained with high accuracy.In this article, using the optimized convolutional neural network, the healthy and unhealthy signal was obtained with 99.9% accuracy and 99.7% sensitivity with 10-fold cross-validation.According to the obtained results, it can be said that the proposed method has the ability to separate healthy and unhealthy signals with acceptable accuracy.

    Keywords: ECG signal, deep learning, heart diseases, optimized convolutional neural network
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال