Detection of healthy and unhealthy ECG signal using optimized convolutional neural network

Article Type:
Research/Original Article (بدون رتبه معتبر)

According to the information of the World Health Organization, today heart diseases are considered the most important threat to humans and are the first cause of death in the world. According to the latest global statistics, 46% of deaths are related to the heart. According to reports and research, a large number of causes of death are caused by heart diseases, while 25% of cases are reversible. Correct and timely diagnosis of patients with acute heart problems can largely prevent sudden death and further problems.Due to the fact that recording an electrocardiogram is inexpensive and fruitful, the use of an electrocardiogram can help a lot in many heart diseases and other diseases.Deep learning is one of the new methods with high accuracy in diagnosis and classification, which is based on the convolutional neural network.Convolutional neural networks have a very high processing and training time, which can be optimized and reduced in order to reduce the time, so that acceptable results can be obtained with high accuracy.In this article, using the optimized convolutional neural network, the healthy and unhealthy signal was obtained with 99.9% accuracy and 99.7% sensitivity with 10-fold cross-validation.According to the obtained results, it can be said that the proposed method has the ability to separate healthy and unhealthy signals with acceptable accuracy.

Journal of Artificial Intelligence in Electrical Engineering, Volume:11 Issue: 43, Autumn 2022
61 to 69  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!