به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

teaching–learning based optimization

در نشریات گروه برق
تکرار جستجوی کلیدواژه teaching–learning based optimization در نشریات گروه فنی و مهندسی
تکرار جستجوی کلیدواژه teaching–learning based optimization در مقالات مجلات علمی
  • فاطمه سادات موسوی علیزاده، سید جعفر فاضلی آبلویی*

    امروزه بازار برق در جهان به صورت علمی شناخته شده می باشد که رقابت در آن هر روز بیشتر از روز قبل است. از آنجا که قابلیت ذخیره سازی انرژی الکتریکی بسیار ناچیز می باشد، بنابراین پیش بینی بار مصرفی و قیمت برق به شرکت کنندگان بازار در بدست آوردن سود هرچه بیشتر کمک شایانی می کند. تاثیرپذیری الگوی بار از عوامل مختلف و غیرخطی بودن سیگنال قیمت برق، انجام پیش بینی دقیق بار و قیمت را دچار مشکل می کند؛ بنابراین استفاده از الگوریتم های هوشمند در مقایسه با روش های عددی و آماری کاربرد بیشتری در مسایل پیش بینی پیدا کرده است. از اینرو در این پایان نامه مسایل مربوط به پیش بینی بار و قیمت برق بیان شده است. همچنین پیش بینی بار الکتریکی و قیمت برق با استفاده از شبکه عصبی فازی تطبیقی (ANFIS) ترکیبی با الگوریتم آموزش و یادگیری (TLBO) صورت گرفته است و تاثیر عوامل مختلف بر روی آن بررسی و شبیه سازی شده است. در واقع با ترکیب الگوریتمهای تکاملی با سیستم عصبی فازی، تنظیم مقادیر بهینه پارامترهای شبکه عصبی فازی تطبیقی به الگوریتم بهینه سازی هوشمند آموزش و یادگیری محول گردد. هدف از بکارگیری این رویکرد بهبود عملکرد شبکه و کاهش پیچیدگی های محاسباتی در مقایسه با روش های گرادیان نزولی و حداقل مربعات می باشد. نتایج پیاده سازی الگوریتم پیشنهادی نشان دهنده کارایی بهتر این الگوریتم در مقایسه با الگوریتم های پیشین پیش بین بار و قیمت برق است.

    کلید واژگان: پیش بینی بار، پیش بینی قیمت، الگوریتم بهینه سازی مبتنی بر آموزش و یادگیری، شبکه عصبی فازی تطبیقی
    Fatemehsadat Mosavi Alizadeh, Seyyed Jafar Fazeli Abelouei*

    Today, the electricity market in the world is known scientifically that the competition in it is more every day than the previous day. Since the ability to store electrical energy is very small, therefore, forecasting the consumption load and the price of electricity helps the market participants to get more profit. The impact of the load pattern on various factors and the non-linearity of the electricity price signal make it difficult to accurately forecast the load and price; Therefore, the use of intelligent algorithms has found more use in forecasting problems compared to numerical and statistical methods. Therefore, in this thesis, the issues related to forecasting the load and electricity price are stated. Also, the electric load and electricity price have been predicted using the Adaptive neuro fuzzy inference system (ANFIS) combined with the Teaching Learning based Optimization (TLBO) and the effect of various factors on it has been investigated and simulated. In fact, by combining the evolutionary algorithms with the fuzzy neural system, the adjustment of the optimal values of the parameters of the adaptive fuzzy neural network should be assigned to the intelligent optimization algorithm of teaching and learning. The purpose of using this approach is to improve network performance and reduce computational complexity compared to gradient descent and least squares methods. The results of the implementation of the proposed algorithm show the better efficiency of this algorithm compared to previous algorithms for predicting load and electricity price.

    Keywords: Load forecasting, price forecasting, Teaching Learning based Optimization, Adaptive neuro fuzzy inference system
  • سجاد مالک، امین خدابخشیان*، رحمت الله هوشمند
    این مقاله یک کنترل کننده مقاوم بر اساس تیوری فیدبک برای مرکز تجمیع توان تولیدی و مصرفی خودروهای الکتریکی جهت حل مشکل کنترل فرکانس که در اثر مشارکت خودروهای الکتریکی در این امر وجود دارد طراحی می کند. از روش تابع لیاپونوف-کراوسکی برای برآورده کردن دو هدف پایداری و عملکرد مقاوم استفاده می شود. سپس مقادیر بهینه ضرایب مشارکت خود روها در کنترل های اولیه و ثانویه فرکانس توسط الگوریتم آموزشی-یادگیری تعیین می گردند. شرط حدود بالا و پایین توان تولیدی به عنوان یک عنصر غیر خطی نیز در نظر گرفته می شود. نتایج شبیه سازی بر روی دو سیستم قدرت متفاوت با استفاده از نرم افزار دیگسایلنت نشان می دهد که کنترل کننده طراحی شده عملکرد بسیار مطلوبی در کنترل فرکانس شبکه دارد.
    کلید واژگان: خودروهای الکتریکی، کنترل فرکانس، روش بهینه سازی آموزش و یادگیری، نامعادله ماتریسی خطی
    S. Malek, A. Khodabakhshian *, R. Hooshmand
    This paper proposes a robust state feedback controller for Electric Vehicle aggregators to solve the challenging problem caused by the participation of Electric Vehicles in the load frequency control of the power system.  The Lyapunov-Krasovskii functional method is used to achieve two objectives of the robust performance and stability.  Then, by using teaching learning based optimization algorithm, both primary and secondary participation gains of EV aggregators in LFC are optimally determined. The Generation Rate Constraint and time delay, as nonlinear elements, are also taken into account.  Simulations are carried out on two nonlinear power systems by using the power system simulation software.  The results show that the designed controller gives a desirable robust performance for frequency regulation at the presence of uncertainties.
    Keywords: Electric vehicle aggregator, Frequency control, Linear Matrix Inequality, Teaching Learning Based ‎Optimization
  • M. M. Dejam Shahabi, S. E. Beheshtian, S. P. Badiei, R. Akbari *, S. M. R. Moosavi
    To achieve high-quality software, different tasks such as testing should be performed. Testing is known as a complex and time-consuming task. Efficient test suite generation (TSG) methods are required to suggest the best data for test designers to obtain better coverage in terms of testing criteria. In recent years, researchers to generate test data in time-efficient ways have presented different types of methods. Evolutionary and swarm-based methods are among them. This work is aimed to study the applicability of swarm-based methods for efficient test data generation in EvoSuite. The Firefly Algorithm (FA), Particle Swarm Optimization (PSO), Teaching Learning Based Optimization (TLBO), and Imperialist Competitive Algorithm (ICA) are used here. These methods are added to the EvoSuite. The methods are adapted to work in a discrete search space of test data generation problem. Also, a movement pattern is presented for generating new solutions. The performances of the presented methods are compared over 103 java classes with two built-in genetic-based methods in EvoSuite. The results show that swarm-based methods are successful in solving this problem and competitive results are obtained in comparison with the evolutionary methods.
    Keywords: Test data generation, Firefly Algorithm, particle swarm optimization, Teaching Learning Based Optimization, Imperialist Competitive Algorithm, EvoSuite
  • M. Safaeian, F. Etebari *, B. Vahdani
    The last decade has seen an important role of container terminals in the global trade centers. By another point of view, the high cost of quay cranes on the other hand is a motivation for a set of real-world problems including of Quay Crane Assignment Problem (QCAP) and the Quay Crane Scheduling Problem (QCSP) in the hotspot of research. The main innovation of this proposal is to integrate both QCAP and QCSP to improve Quay Crane (QC) performance by an optimization goal, i.e., QCASP. A real case study in Iran has been applied to validate the proposed problem which has been formulated by a mixed integer linear programming (MILP). Due to inherent complexity of problem proposed in the real-world cases, the Teaching-Learning-Based-Optimization (TLBO) algorithm has been used to find an optimal/global solution in a reasonable time. The applied TLBO has been tuned by Taguchi method and validated in small instances in comparison with an exact method. The computational results show that our proposed TLBO algorithm can solve QCASP, especially in large size instances, successfully. Finally, a set of managerial implications has been recommended to consider the benefits of proposed methodology and algorithm regarding the real case study presented
    Keywords: Quay crane assignment, Quay crane scheduling, container terminals, teaching-learning-based optimization
  • Alborz Mirzabeigy, Reza Madoliat *
    This study deals with inverse approach for damage detection in a double-beam system. A double-beam system made of two parallel beams connected through an elastic layer. Degradation in stiffness of beams element, crack occurrence and partly destruction of inner layer has been considered as different types of damage. The time domain acceleration response of the system measured and proper orthogonal decomposition has been applied to the collected data in order to derive the proper orthogonal values (POV) and proper orthogonal modes (POM) of the system. Effect of single damage in different locations on the POV has been analyzed and an objective function has been defined using the dominant POV and POM of each beam separately. In order to increase robustness of the method against noise, the objective function enriched by adding statistical property of time domain response. The teaching-learning based optimization algorithm has been employed to solve optimization problem. Efficiency of the proposed method for detecting single and multiple damages in the system demonstrated with and without noise. Simulation results show good accuracy of the proposed method for detection single and multiple damages of different types in the system.
    Keywords: Double-beam system, Proper orthogonal decomposition, crack, Damage, Teaching-Learning based optimization
  • Hossein Shayeghi, Ali Ahmadpour *, Elham Mokaramian
    Power systems are subjected to small–signal oscillations that can be caused by sudden change in the value of large loads. To avoid the dangers of these oscillations, the Power System Stabilizers (PSSs) are used. When the PSSs can not be effective enough, installation of the Thyristor–based compensators to increase the oscillations damping is a suitable method. In this paper, a Static Synchronous Series Compensator (SSSC) is used in Single–Machine Infinite–Bus (SMIB). To control the signal of the output voltage of SSSC, a robust controller is used. Also, we proposed a hybrid control method to adjust the PSS voltage using Teaching–Learning Based Optimization (TLBO) algorithm and Fuzzy Inference System (FIS). Objective functions of designing parameters are based on Integral of Time multiplied by Absolute value of the Error (ITAE). The time–variations of angular speed deviations are investigated in different modes, including: with SSSC/PSS, without SSSC/PSS, different input mechanical power, and different system parameters.
    Keywords: Small–signal oscillations, Power system stabilizer, Static synchronous series compensator, Teaching–learning based optimization, Fuzzy inference system
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال