به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

clustering

در نشریات گروه صنایع
تکرار جستجوی کلیدواژه clustering در نشریات گروه فنی و مهندسی
  • Gholamreza Farahani*

    Recent advances in energy harvesting technology cause Wireless Sensor Networks (WSNs) to be one of the most common communications in different fields. In this paper, a new and appropriate solution based on geographic routing in WSNs with mobile stations is presented to decrease the number of routings and ultimately reduce the usage of energy in the network. In the proposed method named Geographic Routing with the Mobile Sink (GRMS), in the process of selecting the Cluster Head (CH) element, each node that is selected as the CH announces its new role to the other network nodes. By announcing this information, other nodes are also connected to the cluster. In each cluster, the CH creates and broadcasts a schedule in the cluster that contains the time slots assigned to each cluster member. The proposed GRMS method is compared with GEAR, GAF, and GMR methods. The simulation results show that the GRMS has reduced energy consumption compared to GEAR, GAF, and GMR methods. Also, the end-to-end delay in packet delivery has decreased and the number of dead nodes has decreased

    Keywords: Wireless Sensor Network, Geographic Routing, Clustering, Mobile Station
  • Nima Moradi *, Mosayeb Jalilian

    Nowadays, online shopping plays a vital role in providing services and delivering goods to customers in the context of business intelligence and e-commerce. This research analyzes the customer purchase data of an Iranian online shopping company in Tehran. Among the available datasets provided by the company, 200 thousand records of one week of transactions have been selected for the present study. Several classification methods (i.e., Random Forest, gradient-boosted trees, K-Nearest Neighbor (KNN), Naïve Bayes, Kernel Naïve Bayes, and Neural Networks) and clustering approaches have been applied to discover the knowledge and patterns. The results show that before balancing the dataset, the KNN algorithm with K=5 is the best classification method among the existing methods. However, after balancing, gradient-boosted trees outperform the other classification methods. For clustering methods, the results show that the K-Means algorithm with K=3 is more efficient regarding the average within centroid distance for each cluster. Finally, concluding remarks and suggestions for future studies are stated.

    Keywords: Online Shopping, Data Mining, Classification, Clustering
  • Roya Cheshmi Khani, Mohammadali Afshar Kazemi *, Abbas Toloie Eshlaghy, Ezzatollah Asgharizadeh

    Iranian Commercial banks are always considered as one of the most important institutions active in the money and capital market, due to the economic structure of the country and the lack of development of the capital markets, which makes them in charge of financing the economic sectors of the country. However, these banks are not successful in fulfilling their mission. High level of banks' reserves shows that they do not pay enough attention to risk management and credit portfolio management. There are several models such as linear programming, integer programming, zero and one programming that can provide an optimal combination of the elements that make up the facility basket. However, entering financial information into mathematical planning by considering all conditions is not straightforward to achieve such a goal. In this research, using data mining to optimize the multi-objective model of facility allocation is done using neural network. First, the effective variables were extracted from the bank database and after preparation, the most important features were identified using different algorithms such as random forest algorithm, MARS, and step-wise regression. Then, these methods were compared with each other and the best method was selected. In order to cluster the customers, k-means and k-medoids models have been used. Using different criteria, including the silhouette and the best number of clusters, two clusters have been estimated and customers have been identified in two low-risk and high-risk categories. And finally, by using convolutional neural network, the risk and profit of each customer has been predicted.

    Keywords: Loan, Data Mining, Clustering, Deep Learning, Convolutional Neural Network, CNN, LSTM
  • Vali Sameye, Javad Rezaeian Zaidi *, Mohammadreza Lotfi

    This research discusses the multi-objective modeling of vehicle routing by considering time windows, traffic conditions and customer clustering in mbazar online stores. Considering the traffic situation of Tehran city and the necessity of timely delivery of goods to customers, especially customers, it is necessary to consider the amount of traffic in the route of store vehicles. This research presents a two-objective model for the vehicle routing problem by considering priority time windows, traffic conditions, and customer clustering. The first objective is minimizing the transportation fleet costs and the second is maximizing customer satisfaction. The relevant indices have been calculated, and acceptable results have been obtained to compare the weed algorithm with the exact solution method of the mathematical model. Finally, a sensitivity analysis shows changes in the objective functions. According to the obtained results, with the increase in average dissatisfaction, the value of the first objective function is constant, but the value of the second objective function has increased. There has really been a lot of dissatisfaction.

    Keywords: Routing, Time Window, Clustering, Invasive Weed, Customer Satisfaction
  • مهسا نیاوند، محمد امین ادیبی*، عادل پورقادر چوبر
    امروزه مدیریت محیطی برای شرکت ها با تاکید بر حفاظت از محیط زیست به یکی از مهم ترین مسایل تبدیل شده و فشارهای جهانی سازمان ها را ملزم به تولید محصولات و خدمات سازگار با محیط زیست می کند. این چالش منجر به ایجاد مفهوم جدیدی به نام مدیریت زنجیره تامین سبز در حوزه کسب و کار شده است که ترکیبی از تفکر محیطی و زنجیره تامین است. همچنین مشکلات انتخاب تامین کننده سبز به یک موضوع بسیار مهم تبدیل شده است که در تحقیق حاضر با تلفیق تکنیک داده کاوی یعنی روش خوشه بندی دو مرحله ای و روش MADM که در این تحقیق روش MULTI MOORA است برای انتخاب تامین کننده سبز استفاده شده است. همچنین یک مطالعه موردی در دنیای واقعی در شرکت فروشگاه های زنجیره ای اتکا ارائه شده است که با توجه به زمینه های کسب و کار و معیارها از پرسشنامه ای استفاده شده است که میزان سبز بودن تامین کنندگان را در 13 معیار کلی بررسی می کند.
    کلید واژگان: انتخاب تامین کنندگان سبز، تصمیم گیری چند معیاره، خوشه بندی، روش مولتی مورا
    Mahsa Niavand, Mohammad Amin Adibi *, Adel Pourghader Chobar
    Today, environmental management for companies with an emphasis on environmental protection has become one of the most important issues and global pressures require organizations to produce environmentally friendly products and services. This challenge has led to the creation of a new concept called green supply chain management in the field of business, which combines environmental thinking and supply chain. Also, the problems of green supplier selection methods have become a very important issue. a Hybrid supplier selection method, in the present study, is utilized to select the green supplier by combining the Tow-Step data clustering method and the MADM method which in this research is the MULTI MOORA method. A real-world case study is also presented at Etka Chain Stores which uses a questionnaire that measures the greenness of suppliers in 13 general criteria according to business context and criteria. The advantages of the proposed hybrid method are then discussed here to demonstrate its superiority.
    Keywords: Green Supplier Selection, Multi-Criteria Decision Making, Clustering, MULTI MOORA Method
  • علی قربانیان، حمیده رضوی*

    خوشه بندی سری های زمانی فرایندی است که سری های زمانی را باتوجه به خصوصیات آن ها گروه بندی می کند. در پژوهش های پیشین به شباهت موجود بین قطعات یک سری زمانی به منظور خوشه بندی توجه کمتری شده است. در این مقاله یک رویکرد جدید دومرحله ای بر اساس قطعه بندی سری زمانی و خوشه بندی ترکیبی ارائه شده است. در مرحله اول یک مجموعه داده سری زمانی بااستفاده از اندازه پنجره ثابت قطعه بندی شده و هر قطعه به طور جداگانه خوشه بندی شده است. سپس با استفاده از معیارهای درونی، بهترین نتایج حاصله انتخاب شده است. در مرحله دوم نتایج حاصل از مرحله اول با استفاده از خوشه بندی ترکیبی، پردازش شده و برچسب نهایی خوشه بندی حاصل شده است. نتایج الگوریتم ارائه شده نشان دهنده افزایش کارایی خوشه بندی به میزان 2.92 درصد و رسیدن به عدد 67.25 می باشد. همچنین بررسی عملکرد الگوریتم با بهترین نتایج ادبیات نیز نشان دهنده بهترین کارایی با حداقل هزینه زمانی می باشد.

    کلید واژگان: سری های زمانی، خوشه بندی، قطعه بندی، خوشه بندی ترکیبی
    A. Ghorbanian, H. Razavi *

    Time series-clustering, defined as deriving trends and archetypes from sequential data, divides time series into groups considering their characteristics. Previous works mainly focused on distance criterion and clustering algorithm to cluster the time series so few researchers have investigated the similarities between the segments of a time series. To address this research gap, we propose a new two-step approach based on sub-time series and combination clustering. In the rst step, a time series data set is segmented using a xed window size, and each segment is clustered by applying a hierarchical clustering algorithm and Euclidean distance. Also, we use a logarithmic relation based on the length of the time series data set to determine the number of components, selecting the best outcomes using various internal criteria including intergroup variance, Kalinsky-Harbaz, and Dunn index. In the second step, the results of the rst stage are processed using ensemble clustering, and the nal clustering label is obtained. We develop two novel algorithms based on di erent internal criteria for selecting the best segmentations: the rst one in which we consider only one internal criterion and the second one in which we consider three internal criteria simultaneously. Moreover, we run various settings on 82 datasets with 10 replications for the two presented algorithms, checking the nal precision using an external RAND index. Then, to identify the best settings for the proposed algorithms we applied Wilkinson statistical test. Statistical comparison of the results of the two new algorithms on 82 data sets with some algorithms in the related literature indicates signi cant improvement In terms of error rate and execution time. Finally, the ndings acquired based on the best settings of the proposed algorithms indicate that the suggested method has the best RAND index among the previous algorithms in the literature for 32% of the dataset tiers.

    Keywords: Time Series, Clustering, Data Mining, Sub-Series
  • علی میری، مجید خدمتی*

    در این پژوهش تلاش شده است تا با ارایه ی الگوریتمی بهبودیافته و مبتنی بر خوشه بندی، بازشناسی اعداد دست نویس فارسی با دقت قابل توجهی صورت پذیرد. بر این اساس، آموزش و بازشناسی الگوها به کمک شبکه ی عصبی احتمالاتی و چندلایه ی پرسپترون میسر شده است، به این صورت که پس از استخراج دو دسته ویژگی مکان مشخصه و ناحیه یی از داده های آموزشی، داده های هریک از کلاس های دهگانه بر اساس هر ویژگی با استفاده از روش های پیوند کامل، P A M و F C M خوشه بندی شده و کلاس های دهگانه ی جدید حاصل از خوشه بندی، توسط یکی از دو الگوریتم طبقه بندی کننده آموزش می بینند. تعداد بهینه خوشه های هر کلاس با استفاده از الگوریتم بهینه سازی جست وجوی ممنوعه با تابع برازندگی نرخ بازشناسی تعیین می شود. میزان دقت الگوریتم در نهایت با استفاده از داده های آزمایش مورد سنجش قرار می گیرد و با توجه به نتایج ملاحظه می شود که الگوریتم پیشنهادی، بازشناسی اعداد دست نویس فارسی را با دقت بالایی انجام می دهد.

    کلید واژگان: خوشه بندی، شبکه ی عصبی چندلایه، شبکه ی عصبی احتمالاتی، بازشناسی، جست وجوی ممنوعه
    A. Miri, M. Khedmati *

    Pattern recognition is a branch of machine learning that recognizes the patterns and regularities in a set of data, and digit recognition is considered one of the pattern recognition categories. Due to the similarities between some digits in each language, especially in Persian, different algorithms have been developed to recognize the handwriting digits with the least error and in the shortest time complexity. One of the most commonly used methods in data classi cation is the neural network algorithm. While neural networks have been used in the literature for handwriting digits recognition, the combination of clustering approaches and neural network classi ers has not been considered for this problem. Accordingly, this paper proposes an algorithm based on the combination of clustering approaches and neural network classi ers to recognize the Persian handwritten digits accurately. This algorithm performs pattern training and recognition based on Probabilistic Neural Networks (PNN) and multilayer perceptron (MLP) neural networks. In this regard, after extracting the characteristic loci feature and zoning from each image in the training database, the data of each of the ten classes has been clustered using linkage, Partition Around Medoids (PAM), and Fuzzy C-Means (FCM) methods based on the extracted features. Then, the new ten classes resulting from the clustering algorithm are taught by one of the two classi ers, including MLP and PNN. In order to determine the optimal number of clusters in each class, the Tabu search optimization algorithm, one of the most accurate meta-heuristic optimization algorithms, is used. The performance of the proposed algorithms is evaluated and compared with existing algorithms based on the HODA dataset. Based on the results, the proposed algorithm accurately recognizes the Persian handwritten digits. In addition, the proposed method performs more accurately and much faster than most competing algorithms.

    Keywords: Clustering, MLP, PNN, digit recognition, tabu search
  • مجتبی موحدی، مهدی همایونفر*، مهدی فدایی، منصور صوفی
    هدف

    الگوریتم های خوشه بندی، ابزارهای مفیدی برای درک ساختار داده ها و طبقه بندی آن ها در مجموعه داده های مختلف می باشند. با توجه به اهمیت به کارگیری این الگوریتم ها در تحلیل داده های بازارهای مالی که از حجم و گستردگی بالایی برخوردارند، این پژوهش به منظور انتخاب بهترین الگوریتم خوشه بندی برای خوشه بندی شرکت های حاضر در بورس اوراق بهادار تهران در حوزه مالی از الگوریتم های خوشه بندی مختلف استفاده نموده و به ارزیابی اعتبار این الگوریتم ها و انتخاب بهترین الگوریتم پرداخته است.

    روش شناسی پژوهش:

     این پژوهش از نظر هدف، کاربردی و از نظر روش اجرا توصیفی و از نوع کمی (مدل سازی ریاضی) است. جامعه آماری تحقیق شامل 403 شرکت حاضر در بورس اوراق بهادار تهران در سال 98 است که عملکرد آن ها بر اساس چهار معیار مالی ارزیابی شده است.

    یافته ها

    پس از خوشه بندی شرکت های مورد بررسی توسط پنج الگوریتم خوشه بندی K-Means، EM، COBWEB، الگوریتم مبتنی بر چگالی و روش وارد، از هفت شاخص RS، DB، دان، SD، خلوص، آنتروپی و زمان برای ارزیابی الگوریتم های خوشه بندی استفاده گردید. در نهایت، عملکرد نهایی الگوریتم های به کار رفته بر اساس روش های تاپسیس، ویکور و تحلیل پوششی داده ها مورد تجزیه وتحلیل قرار گرفت. بر اساس نتایج، روش K-Means از عملکرد بهتری در خوشه بندی شرکت ها بر اساس مجموعه داده های مالی برخوردار است.

    اصالت/ارزش افزوده علمی: 

    از آن جایی که هیچ الگوریتم خوشه بندی نمی تواند بهترین عملکرد را در تمام اندازه گیری ها برای هر مجموعه داده داشته باشد، این پژوهش ضمن به کارگیری ترکیبی از معیارهای چند گانه به منظور تجزیه وتحلیل الگوریتم های خوشه بندی داده های مربوط به حوزه ارزیابی عملکرد مالی شرکت ها، به ارایه پیشنهاداتی پرداخته و نتایج این پژوهش برای سرمایه گذاران حوزه مالی کاربرد موثر داشته که منجر به انتخاب بهینه سبد سرمایه گذاری می شود.

    کلید واژگان: ارزیابی عملکرد مالی، تصمیم گیری چند معیاره، خوشه بندی
    Mojtaba Movahedi, Mahdi Homayounfar *, Mehdi Fadaei, Mansour Soufi
    Purpose

    Clustering algorithms are useful tools for understanding data structure and classifying them into different data sets. Due to the importance of using these algorithms in analyzing financial market data that have a high volume and scope, this study in order to select the best clustering algorithm for clustering companies listed on the Tehran Stock Exchange in the field of finance from It has used different clustering algorithms and evaluated the validity of these algorithms and selected the best algorithm.

    Methodology

    This research is applied in terms of purpose and descriptive in terms of implementation method and is of quantitative type (mathematical modeling). The statistical population of the research includes 403 companies listed on the Tehran Stock Exchange in 2019, whose performance has been evaluated based on four financial criteria.

    Findings

    After clustering the surveyed companies by five clustering algorithms, namely K-means, EM, COBWEB, density-based algorithm and ward method, seven indicators RS, DB, Dun, SD, Purity, Entropy and Time were used to evaluate the algorithms. Finally, the total performance of the algorithms was analyzed based on TOPSIS, VICOR and DEA methods. Based on the results, K-means has a better performance in clustering based on the financial data sets.

    Originality/Value:

     Since no clustering algorithm can have the best performance in all measurements for each data set, this study uses a combination of multiple criteria to analyze data clustering algorithms related to the field of financial performance appraisal. Companies have provided suggestions and the results of this study have been used effectively for investors in the field of finance, which leads to the optimal choice of investment portfolio.

    Keywords: Clustering, Multi-criteria decision making, Financial Performance Evaluation
  • MohammadJavad Jafari, M. J. Tarokh *, Paria Soleimani

    Customer churn prediction has been gaining significant attention due to the increasing competition among mobile service providers. Machine learning algorithms are commonly used to predict churn; however, their performance can still be improved due to the complexity of customer data structure. Additionally, the lack of interpretability in their results leads to a lack of trust among managers. In this study, a step-by-step framework consisting of three layers is proposed to predict customer churn with high interpretability. The first layer utilizes data preprocessing techniques, the second layer proposes a novel classification model based on supervised and unsupervised algorithms, and the third layer uses evaluation criteria to improve interpretability. The proposed model outperforms existing models in both predictive and descriptive scores. The novelties of this paper lie in proposing a hybrid machine learning model for customer churn prediction and evaluating its interpretability using extracted indicators. Results demonstrate the superiority of clustered dataset versions of models over non-clustered versions, with KNN achieving a recall score of almost 99% for the first layer and the cluster decision tree achieving a 96% recall score for the second layer. Additionally, parameter sensitivity and stability are found to be effective interpretability evaluation metrics.

    Keywords: Machine Learning, customer churn prediction, Interpretability, Clustering, Classification
  • Ali Ghorbanian, Hamideh Razavi *
    Parametric models are considered the widespread methods for time series forecasting. Non-parametric or machine learning methods have significantly replaced statistical methods in recent years. In this study, we develop a novel two-level clustering algorithm to forecast short-length time series datasets using a multi-step approach, including clustering, sliding window, and MLP neural network. In first-level clustering, the time series dataset in the training part is clustered. Then, we made a long time series by concatenating the existing time series in each cluster in the first level. After that, using a sliding window, every long-time series created in the previous step is restructured to equal-size sub-series and clustered in the second level. Applying an MLP network, a model has been fitted to final clusters. Finally, the test data distance is calculated with the center of the final cluster, selecting the nearest distance, and using the fitted model in that cluster, the final forecasting is done. Using the WAPE index, we compare the one-level clustering algorithm in the literature regarding the mean of answers and the best answer in a ten-time run. The results reveal that the algorithm could increase the WAPE index value in terms of the mean and the best solution by 8.78% and 5.24%, respectively. Also, comparing the standard deviation of different runs shows that the proposed algorithm could be further stabilized with a 3.24 decline in this index. This novel study proposed a two-level clustering for forecasting short-length time series datasets, improving the accuracy and stability of time series forecasting.
    Keywords: time series, Clustering, Forecasting, sliding window, Neural Network
  • عباس سرافرازی*
    انتخاب فناوری مناسب، مسیله مهمی است که بنگاه های تولیدی و صنعتی با آن مواجه هستند. این درحالی است که، دسترسی به فناوری های جدید، مجموعه انتخاب را وسیع کرده است بطوریکه حل مسیله انتخاب فناوری با وجود معیارهای تصمیم متعدد، بیش از پیش مشکل و پیچیده شده است. از طرفی فناوری مناسب می تواند مزایای رقابتی قابل توجه ای را برای یک شرکت در یک محیط پیچیده کسب و کار ایجاد نماید. تاکنون روش های مختلفی جهت حل مسیله انتخاب فناوری ارایه گردیده است که هر یک دارای مزایا و معایبی هستند ولی هیج یک از روش های پیشنهادی به طور واحد کلیه قابلیت های لازم را ندارند. در این مقاله با بکارگیری روش تحلیل مولف های اصلی، روش ترکیبی خوشه بندی و تحلیل مولف های اصلی به همراه تیوری فازی، الگوریتم ترکیبی KMPCA در حل مسیله انتخاب فناوری توسعه داده شده است. تعداد متغیرهای انتخاب فناوری از 6 به 14 متغیر با پوشش کامل تری از ابعاد تصمیم ارتقاء یافت و داده ها از 49 فناوری رایج صنعت سنگ ایران جمع آوری و در مدل آزمون گردید. نتایج این تحقیق ضمن بهبود حل، کاهش ابعاد مسیله و کاهش روابط چند همخطی میان داده ها را در فرآیند انتخاب فناوری نشان می دهد.
    کلید واژگان: خوشه بندی، K-Means، تحلیل مولفه های اصلی، PCA، KMPCA، انتخاب فناوری
    Abbas Sarafrazi *
    Choosing the right technology is an important issue faced by manufacturing and industrial companies. This is while the access to new technologies has widened the selection set so that solving the problem of technology selection has become more difficult and complicated despite multiple decision criteria. On the other hand, appropriate technology can create significant competitive advantages for a company in a complex business environment. So far, various methods have been presented to solve the problem of technology selection, each of which has advantages and disadvantages, but none of the proposed methods have all the necessary capabilities. In this article, by using the method of principal components analysis, the combined method of clustering and analysis of principal components along with fuzzy theory, the combined KMPCA algorithm has been developed in solving the technology selection problem. The number of technology selection variables was increased from 6 to 14 variables with a more complete coverage of decision dimensions, and data from 49 currently technologies of Iran's stone industry were collected and tested in the model. The results of this research, while improving the solution, show the reduction of the dimensions of the problem and the reduction of multi-collinear relationships between the data in the technology selection process.
    Keywords: technology selection, clustering, K-Means, principal component analysis, PCA, KMPCA
  • حمیدرضا عاطفی*، جلال رضایی نور

    کسب مزیت رقابتی برای اپراتورهای تلفن همراه بسیار با اهمیت است. خدمات ارزش افزوده تلفن همراه یکی از نوآوری هایی است که اپراتور ها از آن برای تنوع بخشیدن به کسب و کار خود استفاده می کنند. فروش متقاطع برای اپراتورهای تلفن همراه، برای گسترش درآمد و سود بسیار مهم است. زیرا اپراتورها هزینه های جانبی کمتری را در مقایسه با جذب مشتریان جدید متحمل خواهند شد. اما شناخت مشتریان بالقوه خرید خدمات ارایه شده توسط اپراتورها، برای آنها ساده نیست. در این مقاله، برای تسهیل فروش متقاطع خدمات ارزش افزوده تلفن همراه تلاش شده است. داده های استفاده شده در این تحقیق اطلاعات مربوط به خرید های گذشته مشتریان شرکت همراه اول از خدمات ارزش افزوده تلفن همراه است. در راهکار ارایه شده، به زیر ساخت های ایجاد پروفایل فروش متقاطع مشتریان پرداخته شده است. در این راهکار، پس از تعیین دسته بهینه ای از مشتریان با استفاده از خوشه بندی آنها، برای کشف قوانین میان خدمات استفاده شده توسط مشتریان، تلاش شده است. با ساخت این پروفایل می توان جامعه هدفی برای فروش متقاطع هر یک از خدمات بدست آورد.

    کلید واژگان: خدمات ارزش افزوده، خوشه بندی، فروش متقاطع، قوانین وابستگی
    Hamidreza Atefi *, Jalal Rezaeenour

    Gaining a competitive advantage is very important for mobile operators. Mobile value-added services are one of the innovations that operators use to diversify their business. Cross-selling is crucial for mobile operators to generate revenue and profits. Because operators will incur lower ancillary costs compared to attracting new customers. But it is not easy for them to identify potential customers who buy the services provided by operators. In this article, an attempt has been made to facilitate the cross-selling of mobile value-added services. The data used in this research is information about the past purchases of the customers of HamrahAval Company from the value-added mobile services. In the proposed solution, the infrastructure for creating cross-selling customer profiles is discussed. In this solution, after determining the optimal category of customers using their clustering, an attempt has been made to discover the rules between the services used by customers. By creating this profile, a target community can be achieved for the cross-selling of each service.

    Keywords: Association rule, Clustering, Cross sale, Value-added services
  • منیره سادات یونس پور*، مرتضی رموزی

    شبکه حسگر بی سیم یک فناوری در حال رشد است.در شبکه های سنسور بی سیم کارایی شبکه معمولا تحت تاثیر محدودیت انرژی است. در این مقاله روش پیشنهادی بر مبانی الگوریتم انتشار برچسب برای غلبه بر این محدودیت ارایه شده است. ابتدا از سنسورها گراف تشکیل شده و در مرحله بعدی وزن دهی به یال های این گراف بر اساس چهار معیار شباهت انجام می شود. سپس برای هر گره مرکزیت و برچسب اولیه به دست می آید و درنهایت با به روزرسانی برچسب ها، گره هایی که برچسب یکسان دارند در یک خوشه قرار می گیرند. نتایج حاصل شده از روش پیشنهادی با معیارهای تعداد گره های زنده و میانگین انرژی گره های زنده با روش لیچ (leach) مقایسه شده است. که نتایج نشان دهنده این است که درروش پیشنهادی محل قرار گرفتن سنسورها و تنظیم مقدار آستانه برای تشکیل گراف از سنسورها جز متغیرهای اساسی است و مقایسه نشان دهنده برتری روش پیشنهادی نسبت به روش لیچ است.

    کلید واژگان: شبکه حسگر بی سیم، خوشه بندی، انتشار برچسب
    Monireh Sadat Younespour *, Morteza Romoozi

    Wireless sensor network is a growing technology.  In wireless sensor networks, performance is usually affected by energy constraints. In this paper, a method is proposed based on the label propagation algorithm for this limitation. At first, the sensors are composed of a graph In the next stage weighing the edges of this graph is based on four similarity measure  Then for each node, the centrality and the initial label are obtained And finally, by updating the lebel,nodes with the same label are placed in a cluster The results of the proposed method have been compared with  the number of live nodes and the mean energy of live nodes measures by the leach method The results indicate that in the proposed method of positioning the sensors and setting the threshold value for the formation of the graph from the sensors are only fundamental variables And the comparison shows that the proposed method is superior to the leach method

    Keywords: Wireless sensor network, Clustering, label propagation
  • رضا مولایی فرد*

    در این تحقیق، به ارزیابی روش های خوشه بندی انرژی کارآمد در شبکه های حسگر بی سیم می پردازیم. نتایج حاصل از این پژوهش حاکی از آن است که خوشه بندی توسط DBSCAN، امتیاز کارایی بالاتری نسبت به سایر روش های خوشه بندی به دست می آورد. به طوری که DBSCAN امتیاز کارایی 99٪ را به دست آورد اما الگوریتم K-Means، امتیاز کارایی 76٪ را به دست آورد. همچنین انرژی باقیمانده در شبکه پس از اتمام شبیه سازی در مسیریابی با پروتکل جدید حدود 11٪ بیشتر از مسیریابی EEHC و حدود 9٪ بیشتر از مسیریابی با پروتکل LCA است. اگر طول عمر شبکه را در زمان خاموش شدن اولین گره در شبکه در نظر بگیریم در پروتکل جدید اولین گره 6 ثانیه دیرتر از پروتکل EEHC و 12 ثانیه دیرتر از پروتکل LCA خاموش می شود. این بدین معناست که به طور میانگین حدود 10٪ طول عمر شبکه با پروتکل جدید افزایش یافته است. پروتکل I-LEACH راندمان انرژی و طول عمر را باکار بیشتر در همان ساختارها در مقایسه با پروتکل معمولی LEACH بهبود می بخشد.

    کلید واژگان: پروتکل I-LEACH، خوشه بندی، شبکه حسگر بی سیم، کاهش انرژی
    Reza Molaee Fard *

    In this research, we evaluate energy efficient clustering methods in wireless sensor networks. The results of this study indicate that clustering by DBSCAN has a higher efficiency score than other clustering methods. The DBSCAN scored 99%, but the K-Means algorithm scored 76%. Also, the energy remaining in the network after the simulation is completed in routing with the new protocol is about 11% more than routing with EEHC and about 9% more than routing with LCA protocol. If we consider the lifespan of the network when the first node in the network is turned off, in the new protocol, the first node shuts down 6 seconds later than the EEHC protocol and 12 seconds later than the LCA protocol. This means that on average, about 10% of network life has been increased with the new protocol. The I-LEACH protocol improves energy efficiency and longevity by working more in the same structures than the conventional LEACH protocol.

    Keywords: Wireless sensor network, Clustering, energy reduction, I-LEACH algorithm
  • Seyed Hamid Zahiri*, Najme Ghanbari, Hadi Shahraki

    In current study, a particle swarm clustering method is suggested for clustering triangular fuzzy data. This clustering method can find fuzzy cluster centers in the proposed method, where fuzzy cluster centers contain more points from the corresponding cluster, the higher clustering accuracy. Also, triangular fuzzy numbers are utilized to demonstrate uncertain data. To compare triangular fuzzy numbers, a similarity criterion based on the intersection region of the fuzzy numbers is used.  The performance of the suggested clustering method has been experimented on both benchmark and artificial datasets. These datasets are used in the fuzzy form. The experiential results represent that the suggested clustering method with fuzzy cluster centers can cluster triangular fuzzy datasets like other standard uncertain data clustering methods. Experimental results demonstrate that, in almost all datasets, the proposed clustering method provides better results in accuracy when compared to Uncertain K-Means and Uncertain K-medoids algorithms.

    Keywords: Clustering, Particle swarm clustering method, Uncertain data, Triangular fuzzy data, Fuzzy cluster centers, Similarity value
  • غلامرضا سلیمانی، مسعود عابسی *

    تکنیک های داده کاوی به طور خاص برای داده های ثابت طراحی شده اند. لذا به کارگیری آنها برای داده های سری زمانی نیازمند اعمال تغییراتی(روش اندازه گیری شباهت) است. براساس تحقیقات اخیر، روش های طولانی ترین زیردنباله ی مشترک و چرخش زمانی پویا، از پرکاربردترین و کاراترین این روش ها محسوب می شود. در این تحقیق، قصد داریم تا عملکرد این روش ها را در تکنیک های نزدیک ترین همسایگی و خوشه بندی کامدوید مورد ارزیابی و مقایسه قرار داده تا بتوان از آنها با دقت بهتری در این تکنیک ها و در مسایلی نظیر قسمت بندی مشتریان، زمان بندی کارگاه و... استفاده کرد. به همین منظور از 63 مجموعه داده سری زمانی از بانک اطلاعاتی UCR، استفاده می شود. نتایج نشان می دهد که تاثیرآنها در دقت تشخیص درست دسته ی سری زمانی و دقت خوشه بندی، به طور معناداری تفاوت دارد، ولی تاثیر آنها در تعیین تعداد خوشه و نماینده ی خوشه، تفاوت معناداری ندارد.

    کلید واژگان: داده کاوی سری های زمانی، خوشه بندی، نزدیک ترین همسایگی، طولانی ترین زیردنباله ی مشترک، چرخش زمانی پویا
    Gh. Soleimani, M. Abessi*

    Today, the use of data mining techniques such as classification, clustering, discover repetitive pattern and discover outliers in different domains including production, medicine, social, meteorology, stock exchange, sales, customer service and other areas are increasing. Data mining techniques are specifically designed for static data. Therefore, their use for time series data requires some modifications to their respective algorithms. One of these changes is the selection of the appropriate similarity measurement method, because similarity measurement methods are used in all data mining techniques. Therefore, in this research, we will evaluate and compare the effect of two commonly used and efficient methods of time series similarity measurement in data mining. This evaluation is done in relation to the effectiveness of these methods in achieving better results. These methods are the Longest Common Sub Sequence (LCSS) method and the Dynamic time Warping (DTW) method. The main purpose of this research is to compare the performance of these methods in time series data mining. The data mining techniques that used in this research are the nearest-neighbor technique and k-medoids clustering algorithm. The performance evaluation process is described in the text. This process uses the nearest-neighbor technique to calculate the accuracy of detection of right time series class, and uses the k-medoids clustering technique to calculate the clustering accuracy, the ability to correctly determine the number of clusters, and the ability to determine the better cluster representative. For this purpose, we use 63 time series data sets by random from a world-renowned database that named UCR collection. The results show that the effect of LCSS method is significantly better than the effect of DTW method on the correct detection accuracy of time series class and clustering accuracy by 99% and 92.5% confidence, respectively, but there is no significant difference between them in terms of their effect in determining the number of clusters and cluster representatives. The results of this research help to use these methods in appropriate data mining techniques in issues such as customer segmentation, workshop scheduling and the like more accurately.

    Keywords: Time series data mining, clustering, nearest neighbor, longest common subsequence, dynamic time warping
  • Elaheh Bakhshizadeh, Hossein Aliasghari, Rassoul Noorossana*, Rouzbeh Ghousi

    Organizations have used Customer Lifetime Value (CLV) as an appropriate pattern to classify their customers. Data mining techniques have enabled organizations to analyze their customers’ behaviors more quantitatively. This research has been carried out to cluster customers based on factors of CLV model including length, recency, frequency, and monetary (LRFM) through data mining. Based on LRFM, transaction data of 1865 customers in a software company has been analyzed through Crisp-DM method and the research roadmap. Four CLV factors have been developed based on feature selection algorithm. They also have been prepared for clustering using quintile method. To determine the optimum number of clusters, silhouette and SSE indexes have been evaluated. Additionally, k-means algorithm has been applied to cluster the customers. Then, CLV amounts have been evaluated and the clusters have been ranked. The results show that customers have been clustered in 4 groups namely high value loyal customers, uncertain lost customers, uncertain new customers, and high consumption cost customers. The first cluster customers with the highest number and the highest CLV are the most valuable customers and the fourth, third, and second cluster customers are in the second, third, and fourth positions respectively. The attributes of customers in each cluster have been analyzed and the marketing strategies have been proposed for each group.

    Keywords: Customer lifetime value, LRFM model, Data mining, Clustering
  • منیره سادات یونس پور*، مرتضی رموزی
    شبکه حسگر بی سیم یک فناوری در حال رشد است.در شبکه های سنسور بی سیم کارایی شبکه معمولا تحت تاثیر محدودیت انرژی است. در این مقاله روش پیشنهادی بر مبانی الگوریتم انتشار برچسب برای غلبه بر این محدودیت ارایه شده است. ابتدا از سنسورها گراف تشکیل شده و در مرحله بعدی وزن دهی به یال های این گراف بر اساس چهار معیار شباهت انجام می شود. سپس برای هر گره مرکزیت و برچسب اولیه به دست می آید و درنهایت با به روزرسانی برچسب ها، گره هایی که برچسب یکسان دارند در یک خوشه قرار می گیرند. نتایج حاصل شده از روش پیشنهادی با معیارهای تعداد گره های زنده و میانگین انرژی گره های زنده با روش لیچ (leach) مقایسه شده است. که نتایج نشان دهنده این است که درروش پیشنهادی محل قرار گرفتن سنسورها و تنظیم مقدار آستانه برای تشکیل گراف از سنسورها جز متغیرهای اساسی است و مقایسه نشان دهنده برتری روش پیشنهادی نسبت به روش لیچ است.
    کلید واژگان: شبکه حسگر بی سیم، خوشه بندی، انتشار برچسب
    Monireh Sadat Younespour *, Morteza Romoozi
    Wireless sensor network is a growing technology.  In wireless sensor networks, performance is usually affected by energy constraints. In this paper, a method is proposed based on the label propagation algorithm for this limitation. At first, the sensors are composed of a graph In the next stage weighing the edges of this graph is based on four similarity measure  Then for each node, the centrality and the initial label are obtained And finally, by updating the lebel,nodes with the same label are placed in a cluster The results of the proposed method have been compared with  the number of live nodes and the mean energy of live nodes measures by the leach method The results indicate that in the proposed method of positioning the sensors and setting the threshold value for the formation of the graph from the sensors are only fundamental variables And the comparison shows that the proposed method is superior to the leach method
    Keywords: Wireless sensor network, Clustering, label propagation
  • رضا مولایی فرد*

    در این تحقیق، به ارزیابی روش های خوشه بندی انرژی کارآمد در شبکه های حسگر بی سیم می پردازیم. نتایج حاصل از این پژوهش حاکی از آن است که خوشه بندی توسط DBSCAN، امتیاز کارایی بالاتری نسبت به سایر روش های خوشه بندی به دست می آورد. به طوری که DBSCAN امتیاز کارایی 99٪ را به دست آورد اما الگوریتم K-Means، امتیاز کارایی 76٪ را به دست آورد. همچنین انرژی باقیمانده در شبکه پس از اتمام شبیه سازی در مسیریابی با پروتکل جدید حدود 11٪ بیشتر از مسیریابی EEHC و حدود 9٪ بیشتر از مسیریابی با پروتکل LCA است. اگر طول عمر شبکه را در زمان خاموش شدن اولین گره در شبکه در نظر بگیریم در پروتکل جدید اولین گره 6 ثانیه دیرتر از پروتکل EEHC و 12 ثانیه دیرتر از پروتکل LCA خاموش می شود. این بدین معناست که به طور میانگین حدود 10٪ طول عمر شبکه با پروتکل جدید افزایش یافته است. پروتکل I-LEACH راندمان انرژی و طول عمر را باکار بیشتر در همان ساختارها در مقایسه با پروتکل معمولی LEACH بهبود می بخشد.

    کلید واژگان: پروتکل I-LEACH، خوشه بندی، شبکه حسگر بی سیم، کاهش انرژی
    Reza Molaee Fard *

    In this research, a new method is presented to improve the recommendation systems in the field of health tourism, which can make accurate predictions by using participatory filtering and by using the points that previous tourists have given to places and health professionals in our country. For the use of tourists. According to the research, data clustering using DBSCAN algorithm obtained 99% efficiency score, which is the highest efficiency score among the existing algorithms. Also, SVM method has 95% score in accuracy section and 99% score in call section. Which shows the high accuracy of predicting the results and the proposed method in general up to 80% can correctly identify the places needed by the tourist and suggest the appropriate place to a large extent correctly

    Keywords: Wireless sensor network, Clustering, energy reduction, I-LEACH algorithm
  • Soroush Babaee Khobdeh, MohammadReza Yamaghani *, Siavash Khodaparast Sareshkeh

    Clustering players based on their abilities, a new perspective and an important opportunity to meet needs that in the light of traditional talent identification and player science, which is held periodically and there is not enough time for them to appear. Early recognition of these abilities is a factor influencing the success of sports teams. Artificial Neural Network (ANN) is a new method of modelling and prediction. The aim of this study was to cluster basketball players based on their individual abilities. For this purpose, Self-Organizing Map (SOM) Neural Networks (NNs) were used. The data set used by 3000 NBA players for 2011 until 2018 is from the Basketball-Reference[1] site. Each player is assigned 30 attributes to reduce them using the Principal Component Analysis (PCA) method and the features for each player were reduced to 12 samples. In order to implement a SOM of features and functions in MATLAB software 65% of the data were used as the network training phase and the remaining 35% were used to the test phase. 12 players’ features as network input and output 9 clusters resulting from the combination of features. After simulation using SOM, accuracy parameter with the help of this system were obtained above 95%. The result of the study showed that the performance of the SOM in clustering basketball players was higher than the K-Means algorithm. The network implemented in this article has a faster speed in the training process and generalizability than similar cases.

    Keywords: Basketball, Clustering, k-means, Self-Organizing Map (SOM), Neural Networks (NNs), discriminant Analysis, PCA
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال