به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

genetic algorithm

در نشریات گروه صنایع
تکرار جستجوی کلیدواژه genetic algorithm در نشریات گروه فنی و مهندسی
  • امیرحسین اکبری*، مصطفی جعفری

    در این تحقیق، یک الگوریتم یادگیری تقویتی عمیق برای مسئله سیستم تولید سلولی با در نظر گرفتن هزینه های تاخیر و رد سفارشات پیشنهاد شده است. سفارشات با ویژگی های مختلف شامل درآمد، زمان انجام، موعد تحویل و هزینه تاخیر به صورت پویا و در زمان های مختلف وارد سیستم می شوند. با توجه به ظرفیت محدود سیستم، امکان پذیرش تمامی سفارشات وجود ندارد و برخی از آنها باید در زمان ورود رد شوند تا امکان انجام به موقع سایر سفارشات فراهم شود. یک مدل ریاضی با دو هدف بیشینه سازی سود و کمینه سازی تعداد سفارشات ردشده ارائه شده است و برای حل این مسئله، از یک الگوریتم یادگیری تقویتی عمیق استفاده شده است. الگوریتم پیشنهادی در دسته های مختلفی از مسائل نمونه ای و مسائل واقعی با الگوریتم های موجود در ادبیات مقایسه شده و کارایی آن به اثبات رسیده است. نتایج نشان دهنده برتری 36.3 درصدی در سود و 13.87 درصدی در تعداد سفارشات پذیرفته شده است. همچنین، با پذیرش 1 درصد سفارش بیشتر، میزان سود به طور متوسط 2.7 درصد کاهش می یابد.

    کلید واژگان: یادگیری تقویتی عمیق، سیستم تولیدی سلولی، پذیرش و زمان بندی سفارشات، الگوریتم ژنتیک
    Amirhossein Akbari *, Mostafa Jafari

    In this research, a deep reinforcement learning algorithm is proposed for the cellular manufacturing system problem considering the costs of delay and rejection of orders. Orders with different characteristics including revenue, lead time, delivery date, and delay cost are dynamically entered into the system at different times. Due to the limited capacity of the system, it is not possible to accept all orders and some of them must be rejected at the time of entry to enable timely execution of other orders. A mathematical model with two objectives of maximizing profit and minimizing the number of rejected orders is presented and a deep reinforcement learning algorithm is used to solve this problem. The proposed algorithm is compared with the algorithms available in the literature in different categories of example problems and real problems and its efficiency is proven. The results show a 36.3% advantage in profit and 13.87% in the number of accepted orders. Also, by accepting 1% more orders, the profit decreases by 2.7% on average

    Keywords: Deep Reinforcement Learning, Cellular Manufacturing System, Order Acceptance, Scheduling, Genetic Algorithm
  • جهانبخش محمودزاده، محمدمهدی موحدی*، سید احمد شایان نیا

    پژوهش حاضر به ارائه مدل سه سطحی با اطلاعات ناقص وغیر قطعی زنجیره تامین پرداخته است. اهداف مسئله شامل تعیین بهترین تصمیم هر یک از بازیکنان برای تعیین مقدار سفارش بهینه و کمبود برای تولید کننده و قیمت فروش هر بازیکن با توجه به کمبود، تخفیف و هزینه های نگهداری، خرید و بازاریابی برای دستیابی به حداکثر درآمد، حداقل هزینه ها و در مجموع آن، حداکثر سود ممکن برای کل بازیکنان شرکت کننده در زنجیره است. برای حل مدل از نرم افزار گمز و الگوریتم های فرا ابتکاری استفاده شده است . با توجه به در زمره پیچیدگی سخت بودن مسایل زنجیره تامین حلقه بسته، مسئله پیش رو نیز در زمان معقول برای ابعاد موجود در دنیای واقعی حل شدنی نیست. از این رو، برای حل آن از رویکرد فراابتکاری در قالب الگوریتم های ژنتیک و بهینه سازی ازدحام ذرات و ترکیب این دو الگوریتم استفاده شده است. نتایج نشان می دهد که که الگوریتم ترکیبی ژنتیک و ازدحام ذرات در مقایسه با الگوریتم های ژنتیک و ازدحام ذرات از عملکرد بهتری برخوردار بوده است.

    کلید واژگان: زنجیره تامین، الگوریتم های فرا ابتکاری، الگوریتم ژنتیک، الگوریتم ازدحام ذرات
    Jahanbakhsh Mahmoudzadeh, Mohammadmahdi Movahedi *, Seyed Ahmad Shayannia

    The present study presents a three-tier model with incomplete and uncertain information of supply chain needs, benefits and services. Objectives of the issue include determining the best decision to determine the optimal order amount and shortage for the manufacturer and the selling price of each player according to the shortage, discount and maintenance costs, purchase and marketing to achieve maximum revenue, minimum costs and The sum is the maximum possible profit for all the players participating in the chain. To solve the model, Gamz software and meta-heuristic algorithms have been used and finally, Given the complexity of the complexity of closed-loop supply chain problems, the problem ahead cannot be solved in a reasonable time for real-world dimensions. Therefore, to solve it, the meta-heuristic approach in the form of genetic algorithms and optimization of particle aggregation and the combination of these two algorithms have been used. The results show that the combined algorithm of genetics and particle swarming has a better situation compared to genetic and particle swarming algorithms.

    Keywords: Supply Chain, Meta- Heuristic Algorithms, Genetic Algorithm, Particle Swarm Algorithm
  • Hossein Ghanbari, Emran Mohammadi *, Farnaz Barzinpour, Alireza Paeizi
    Portfolio selection has been recognized as one of the most significant and challenging problems in financial engineering since Markowitz’s pioneering work on the mean-variance model. This problem centers on the optimal allocation of wealth across a set of assets to maximize returns while minimizing investment risk. While the basic Markowitz mean-variance framework is theoretically elegant and foundational, it has faced criticism from investment practitioners due to its reliance on unrealistic assumptions that limit its practical applicability. Specifically, the traditional model assumes perfect market conditions and neglects real-world constraints, such as the need to limit the number of assets in a portfolio (cardinality), which can significantly reduce its practical applicability. To address these limitations, this paper extends the mean-variance portfolio selection model by incorporating cardinality and floor-ceiling (quantity) constraints. The cardinality constraint ensures that the portfolio includes a specified number of assets, while the floor-ceiling constraint regulates the allocation to each asset, restricting it within predefined bounds. These added constraints transform the classical quadratic optimization problem into a mixed-integer quadratic problem, which necessitates the use of approximation algorithms such as metaheuristic algorithms for efficient and feasible solutions. Although numerous metaheuristic algorithms have been employed to tackle this problem, genetic algorithms have gained prominence due to their balance between solution quality and computational efficiency. However, the standard genetic algorithm is not without its shortcomings, particularly when handling the complexity of constrained portfolio optimization. To overcome these limitations, we propose a novel crossover operator designed to enhance the performance of the genetic algorithm.
    Keywords: Portfolio Selection Problem, Markowitz' S Mean-Variance Framework, Cardinality Constraint, Genetic Algorithm, Crossover Operator
  • Masoomeh Zeinalnezhad *, Zohreh Ebrahimi, Towhid Pourrostam
    Nowadays, one of the major concerns of investors is choosing a realistic stock portfolio and making proper decisions according to an individual's utility level. It is essential to consider two conflicting goals of return and risk for profitability; as a result, balancing the above goals has been identified as an investment concern. This paper modifies and optimizes a multi-objective and multi-period stock portfolio considering cone constraints and uncertain and stochastic discrete decisions. Non-dominated Sorting Genetic Algorithm-II (NSGA-II) was used to solve the model due to the issue's complexity. Two objective functions in the model could be explained by maximizing expected returns and minimizing investment risk. The Pareto chart of the problem was drawn, which allows investors to make decisions based on various levels of risk. Another result obtained in this study is calculating the percentage of optimal amounts assigned to each asset, providing a base for investors to avert investing in unsuitable assets and incurring losses. Finally, a sensitivity analysis of essential parameters was performed, which is critical in this issue. According to the results, increasing the number of problem constraints provides a base for the model reaction, and the optimal percentage allocated to each asset varies. Therefore, this prioritizes restrictions in different situations and according to the investors' choice.
    Keywords: Genetic Algorithm, Optimization, Stock Portfolio, Cone Constraints, Multi-Objective Modeling, Discrete Decisions
  • Mohammad Shafiekhani, Alireza Rashidi Komijan *, Hassan Javanshir

    In this paper, a new type of Vehicle Routing Problem (VRP) in the valuable commodity transportation industry is modeled considering the route risk constraint. The proposed model has two objective functions for risk minimization. In the first objective function, three concepts are presented, which are 1) the vehicle does not travel long distances in the first three moves because it carries more money, 2) to serve the same branch on two consecutive days, at the same time, and 3) the bow should not be repeated in two consecutive days. This reduces the possibility of determining a fixed pattern for the service and increases its security. In the second objective function, the risk is a function of the amount of money, the probability of theft, and the probability of its success. Two different meta-heuristic algorithms have been used to solve the proposed model, including the genetic and ant colony optimization algorithms. In computational testing, the best parameter settings are determined for each component, and the resulting configurations are compared in the best possible settings. The validity of the answers of the algorithms has been investigated by generating different problems in various dimensions and using the real information of Shahr Bank. The results show that the genetic algorithm provides better results compared to the ant colony algorithm, with an average of 0.93% and a maximum of 1.87% difference from the optimal solution.

    Keywords: Risk, Valuable Commodity, Vehicle Routing Problem With Time Window, Genetic Algorithm, Ant Colony Optimization Algorithm
  • سجاد امیری، جواد رضائیان*

    در این تحقیق یک مدل برنامه ریزی عدد صحیح غیرخطی ارائه می شود که به بررسی مساله برنامه ریزی سفارش در محیطی چندمحصولی، چنددوره ای و زمان بندی آن بر روی ماشین های موازی غیرمرتبط با استفاده از سیاست تولیدی ترکیبی ساخت برای انبارش (MTS) و ساخت براساس سفارش (MTO)، در جهت رویکرد تحویل به موقع (JIT) می پردازد؛ تابع هدف مساله، کمینه سازی مجموع هزینه های عملیاتی، خرید مواد اولیه، نگهداری مواد اولیه و محصولات نهایی، دیرکرد و رد سفارش ها می باشد. مدل پیشنهادی با یک مثال بدیهی به وسیله نرم افزار lingo 9.0،کدنویسی، حل و اعتبارسنجی شده است. نتایج نشان دهنده عملکرد صحیح مدل می باشد که با داشتن کمترین سطح موجودی، بیشترین سفارش ها را در زمان مناسب پاسخ می دهد. همچنین نظربه چالش های تئوریک و کاربرد های صنعتی یک الگوریتم ژنتیک به منظور حل این مساله پیشنهاد گردیده است. عملکرد الگوریتم پیشنهادی با استفاده از تعدادی مسائل عددی مورد ارزیابی قرار گرفته است. درنهایت، آنالیز نتایج محاسباتی نمایانگر عملکرد رضایت بخش الگوریتم بوده است.

    کلید واژگان: الگوریتم ژنتیک، برنامه ریزی سفارش، ساخت برای انبارش، ساخت برای سفارش، زمان بندی ماشین های موازی غیرمرتبط، تحویل به موقع
    Sajad Amiri, Javad Rezaeian *

    In this research, a proposed integer non-linear programming model investigates the order planning problem in a multi-product, multi-period environment. The model focuses on unrelated parallel machine scheduling using make-to-stock (MTS)1 and make-to-order (MTO)2 combinational policies towards the just-in-time (JIT)3 approach. The objective function is to minimize total operating costs, procurement of raw materials, storage of raw materials and final products, tardiness, and rejection of orders. The proposed model is coded, solved, and validated using an illustrative example with Lingo 9.0 software. The results show the model's correct performance, which responds to most orders at appropriate times with the lowest inventory level. Also, considering the theoretical challenges and industrial applications, a genetic algorithm is proposed to solve this problem. The performance of the proposed algorithm is evaluated using several numerical issues. Finally, the analysis of computational results indicates the satisfactory performance of the algorithm.

    Keywords: Genetic Algorithm, Order Planning, Unrelated Parallel Machines Scheduling, Make-To-Stock (MTS), Make-To-Order (MTO), Just In Time (JIT)
  • مسعود لطیفیان، رضا توکلی مقدم*، امیرحسین لطیفیان، مهدی کاشانی

    در زمینه ی مساله تشکیل سلول، مقالات و تحقیقات اندکی به خرابی یا قابلیت اطمینان ماشین ها پرداخته اند. عموما در مساله تشکیل سلول فرض براین است که اکثر ماشین ها 100 درصد قابل اطمینان هستند، با این وجود در مسائل واقعی چنین اتفاقی نمی افتد. خرابی ماشین ها می تواند به شدت بر عملکرد سیستم تاثیر بگذارد و باعث می شود کارها در تاریخ مقرر انجام نپذیرد. سیستم تولید سلولی، یکی از فلسفه های فناوری گروهی است که با تقسیم یک سیستم بزرگ به چندین زیرسیستم کوچک، کنترل و مدیریت سیستم تولید را تسهیل می کند. هدف از پژوهش حاضر، ارائه یک مدل برنامه ریزی ریاضی برای مساله برنامه ریزی تولید در واحدهای صنعتی با درنظر گرفتن قابلیت اطمینان است که شرایط استفاده از مسیر های جایگزین برای قطعات را ایجاد می نماید و منجربه کمینه سازی هزینه های ازدست رفته و همچنین هزینه های نگهداری و تعمیرات می شود. ازآنجائی که مساله پیشنهادی از نوع چندجمله ای غیرقطعی سخت است برای حل مدل پیشنهادی از الگوریتم ژنتیک استفاده می شود. مدل ریاضی ارائه شده با حداقل کردن هزینه های خرابی ماشین ها باعث کاهش هزینه های سیستم، نگهداری و تعمیرات، و حرکات بین و درون سلولی گردید.

    کلید واژگان: سیستم تولید سلولی، برنامه ریزی تولید، بهینه سازی ریاضی، قابلیت اطمینان، الگوریتم ژنتیک
    Masoud Latifian, Reza Tavakkoli-Moghaddam *, Amirhossein Latifian, Mahdi Kashani

    A few studies have addressed the failure or reliability of machines regarding cell formation problems. The general assumption in cell formation is that most machines are 100% reliable; however, they are not in a practical situation. Machine failure can severely affect the system performance and cause a delay in the scheduled date. A cellular manufacturing system is a philosophy among group technology ones, which is controlled by dividing a large system to multiple smaller sub-systems and facilitate manufacturing system management. This study presents a mathematical programming model for production planning problems in industrial units with reliability that prepares the conditions to utilize alternative routes for parts, which minimizes the lost costs along with maintenance costs. Since the considered problem is an NP-hard one, a genetic algorithm is used to solve the model. The presented mathematical model minimizes system costs, and the costs related to intra- and inter-cellular movements and maintenance by minimizing the costs of machine failures.

    Keywords: Cellular Manufacturing System, Production Planning, Mathematical Optimization, Reliability, Genetic Algorithm
  • Roza Montazeri Parchikolayi, Seyed Ahmad Shayannia *, Amirgholam Abri, Ebrahim Niknaqsh

    The main goal of the research is production timing with the approach of meta-heuristic algorithms. First, the mathematical model of the production schedule was presented, and then the model was solved with the genetic algorithm. All types of genetic operators were considered at this stage, and an attempt was made to achieve better answers by choosing appropriate methods. The result of applying these targeted selection methods was the rapid convergence of the population. However, this fast convergence did not provide an optimal solution because it quickly converged all the people of the population to a local optimal solution and did not allow the algorithm to search more of the solution space. Therefore, contrary to expectations, the targeted selection methods without a suitable generation method did not improve the algorithm's efficiency. At this stage, the generation methods were considered; the optimal solution for big problems was also obtained by implementing the selection methods. By finding the appropriate generation method, it was observed that even the operators who did not have much ability to see close to optimal solutions succeeded in finding optimal solutions.

    Keywords: Production Scheduling, Workshop Production System, Genetic Algorithm
  • حامد فضل الله تبار*
    هدف

    افزایش مخاطرات زیست محیطی و کمبود منابع توجه به اقتصاد دوار و محصولات در زنجیره معکوس شبکه تامین را ضروری می سازد. از سوی دیگر اتخاذ تصمیمات متناسب اقتصادی و زیست محیطی در مراحل مختلف دوره عمر محصولات موجب افزایش سودآوری شبکه زنجیره تامین می شود. لذا، در این پژوهش یک زنجیره تامین چهار لایه ای شامل تامین کنندگان، تولیدکنندگان، مراکز توزیع و بازارها در جهت مستقیم و سه تسهیل شامل مراکز جمع آوری، جداسازی و دفع ضایعات در جهت معکوس پیکره بندی می گردد.

    روش شناسی پژوهش: 

    زنجیره تامین معکوس شامل مراکز جمع آوری، یک مرکز جداسازی و یک مرکز دفع می باشد. هم چنین سه نوع محصول درجه 1 و 2 و 3 در این شبکه تولید می شود. محصول درجه 1، محصولی است که تمام قطعات و مواد اولیه تشکیل دهنده آن اصلی و درجه 1 بوده و به طور مستقیم از تامین کنندگان، تهیه و سپس در مراکز تولید قطعات آن ها تولیدشده و درنهایت محصول درجه 1 در اختیار مشتری قرار می گیرد. محصولات درجه 2، تمام قطعات تشکیل دهنده آن ها همان قطعات مصرفی قابل استفاده مجدد می باشد که از طریق زنجیره معکوس و از مرکز جداسازی در اختیار مراکز تولید قرار می گیرند. این قطعات سپس مونتاژ شده و درنهایت محصول درجه 2 تولید خواهد شد. محصولات درجه 3، محصولاتی هستند که قطعات تشکیل دهنده آن ها ترکیبی از قطعات اصلی یا همان درجه 1 و قطعات قابل استفاده مجدد می باشد. زنجیره تامین روبه جلو با تهیه مواد اولیه از تامین کنندگان آغاز می شود. فرض بر آن است که تمام مراحل تولید درون سازمانی است و در داخل مراکز تولید موردنظر انجام می شود. سپس، محصولات تولیدشده به بازار مشتریان فرستاده می شود.

    یافته ها

    در زنجیره معکوس از شبکه پیشنهادی، محصولات پس از گذشت زمان و مستهلک شدنشان توسط مراکز جمع آوری از مشتریان خریداری می شوند. سپس محصولات بازگشتی جمع آوری شده به مرکز جداسازی منتقل می شود. در مرکز جداسازی قطعات جدا شده، ازنظر کیفیت بازرسی خواهند شد و به دو دسته قابل استفاده مجدد و غیرقابل استفاده طبقه بندی می شوند. دسته اول قطعاتی هستند که مصرف آن ها خاتمه یافته است و به مراکز تولید بازمی گردند. دسته دوم ضایعاتی محسوب و به مرکز دفع منتقل می شوند. برای حل مدل پیشنهادی در ابعاد کاربردی از الگوریتم های ژنتیک و بهینه سازی ازدحام ذرات برای یافتن جواب بهینه استفاده شده است. با بررسی نتایج و تحلیل های انجام شده و با توجه به شاخص درصد انحراف نسبی و زمان حل مشخص شد که الگوریتم ژنتیک دارای عملکرد بهتری بوده است.

    اصالت/ارزش افزوده علمی:

    در شبکه ارایه شده چرخه عمر محصول در نظر گرفته می شود و لذا مدل چند دوره ای می باشد. تسهیل مراکز توزیع در شبکه بین دو تسهیل تولیدکنندگان و بازارهای مشتری قرار می گیرد. چندین مراکز جداسازی و دفع در نظر خواهیم گرفت. سه نوع تقاضا و نرخ بازگشت به ازای هر نوع محصول وجود دارد. یک مدل برنامه ریزی خطی عدد صحیح مختلط با هدف بیشینه سازی سود اقتصادی در طول دوره عمر محصول و قیمت گذاری ارایه می گردد. با توجه به پیچیدگی محاسباتی در ابعاد متوسط، یک الگوریتم ژنتیک برای یافتن جواب بهینه استفاده ده است. کارایی الگوریتم ژنتیک با تحلیل های عددی اثبات می شود.

    کلید واژگان: الگوریتم ژنتیک، زنجیره تامین دوار، دوره عمر محصول، قیمت گذاری
    Hamed Fazlollahtabar *
    Purpose

    This research aims to configure a four-layer supply chain including suppliers, manufacturers, distribution centers and markets in the direct direction and three facilities including waste collection, separation and disposal centers in the reverse direction. The increase in environmental risks and lack of resources make it necessary to pay attention to the circular economy and products in the reverse chain of the supply network. On the other hand, making appropriate economic and environmental decisions at different stages of the life cycle of products increases the profitability of the supply chain network.

    Methodology

    The reverse supply chain consists of collection centers, a separation center and a disposal center. Also, three types of grade 1, 2 and 3 products are produced in this network. Grade 1 product is a product in which all the components and raw materials are original and grade 1 and are procured directly from suppliers and then produced in their parts production centers, and finally, grade 1 product is provided to the customer. In Grade 2 products, all their constituent parts are reusable consumable parts that are provided to production centers through the reverse chain and from the separation center. These parts are then assembled and finally, the 2nd grade product will be produced. Grade 3 products are products whose constituent parts are a combination of original or grade 1 parts and reusable parts. The forward supply chain begins with the procurement of raw materials from suppliers. It is assumed that all the production steps are internal and are done inside the desired production centers. Then, the manufactured products are sent to the customer market.

    Findings

    In the reverse chain of the proposed network, the products are purchased from the customers by the collection centers after the passage of time and their depreciation. The collected returned products are then transported to the separation center. At the disassembly center, the disassembled parts will be inspected for quality and classified into reusable and non-reusable categories. The first category is the parts whose consumption has ended. They return to the production centers. The second category is considered waste and is transferred to the disposal center. To solve the proposed model in practical dimensions, genetic algorithms and particle swarm optimization have been used to find the optimal solution. By examining the results and analyses performed and considering the relative deviation percentage index and solution time, it was determined that the genetic algorithm had better performance.

    Originality/Value:

     In the presented network, the life cycle of the product is considered, and therefore, it is a multi-cycle model. The facility of distribution centers is placed in the network between the two facilities of producers and customer markets. We will consider several separation and disposal centers. There are three demand types and return rates for each product type. A mixed integer linear programming model is presented with the aim of maximizing economic profit during the product life cycle and pricing. Due to the computational complexity in medium dimensions, a genetic algorithm has been used to find the optimal solution. The efficiency of the genetic algorithm is proved by numerical analysis.

    Keywords: Genetic Algorithm, Circular Supply Chain, Pricing, Product Life Cycle
  • Sana Booshehrian, Ehsan Amiri *, Javad Mohammadi Madavani

    The main goal of cloud computing is to achieve higher throughput on a large scale. Load balancing is always a challenge and requires a distributive solution. The response time criterion and energy consumption are evaluated by dynamically transferring the local workload from one machine to another or a less commonly used machine. The main purpose of the load balancing algorithm is to improve the response time by distributing the system's total load. Different algorithms are used in load balancing that can have different parameters. The most important features used are desirability and efficiency. In this report, we optimize the execution time in a set of tasks by examining the load balance parameters and using the Firefly algorithm. The proposed algorithm includes the improved firefly model, which is defined as two parts. The innovation of the present study includes improving the performance of the firefly algorithm and reducing the number of searches in this method, and it has been compared with other optimization algorithms from various aspects. The proposed algorithm enhances the firefly model by improving its performance and reducing the number of searches, as compared to other optimization algorithms. The research results show that the proposed method has a better balance in response time and memory than the GA, NSGA-II, and PSO methods. They also show that the load balance in processor efficiency has a growth of 6% compared to the GA, NSGA-II, and PSO.

    Keywords: Cloud Computing, Load Balancing, Firefly Algorithm, Optimization, Node, Genetic Algorithm
  • Zeinab Kazemi, Mahdi Homayounfar *, Mehdi Fadaei, Mansour Soufi, Ali Salehzadeh

    Management of blood product consumption is a complex and important issue in health systems. Limited blood supply, corruption, special conditions for storage of blood products, and high costs due to losses and lack of blood in medical centers are among the factors affecting the problem. In this study, all three levels of donors, blood collection centers, and customers (hospitals) are considered for modeling the blood supply network in the form of a multi-objective model. Three objectives of the proposed model are: (a) minimizing total costs, (b) minimizing total delivery time of blood units, and (c) minimizing the maximum unmet demand of hospitals in each period. Next, the model used two multi-objective optimization algorithms namely NSGAII and MOPSO algorithms for solving 30 sample problems in different dimensions (small, medium, and large). After solving the sample problems, the efficiency of the two algorithms were compared with each other. According to the results, for the cost objective function and each of its components separately, it can be seen that the values resulted from the NSGA-II algorithm were less than the MOPSO . Finally, a real word data set from the Tehran blood center was used to evaluate the validity of the proposed model.

    Keywords: Multi-Objective Optimization, Blood, Supply Chain, Genetic Algorithm, NSGA II
  • Fatemeh Shahrabi, Mohammad Mahdi Nasiri *, Mohammad Javad Mirzapour, Negin Esmaeelpour

    Today's transportation systems, which largely rely on the combustion of fossil fuels, play a significant role in contributing to energy-related greenhouse gas (GHG) emissions, thereby raising serious concerns about sustainability. As awareness of environmental issues grows, incorporating sustainable practices into logistics, particularly in cross-dock scheduling, is becoming increasingly vital. This paper introduces a sustainable vehicle routing problem (VRP) that integrates cross-docking to enhance decision-making within logistics systems. Beyond purely economic considerations, it emphasizes critical aspects like environmental impacts, notably CO2 emissions, and social factors such as equity among drivers and overall customer satisfaction. To tackle these complex challenges, a metaheuristic approach blending Genetic Algorithms (GA) with mixed integer programming (MIP) is proposed as an effective solution strategy. The method's efficacy is validated through various instances of differing sizes, revealing that the GA yields results with minimal deviation from optimal fitness values in smaller instances. Additionally, a comprehensive real case study is conducted to showcase the model's applicability in practical scenarios and finally, some suggestions for further researches are given. This study not only illustrates the operational benefits of the proposed approach but also underscores the importance of sustainable logistics in mitigating environmental impacts while fostering social equity and enhancing customer experience.

    Keywords: Sustainable Vehicle Routing Problem, Cross-Docking, Freshness, Job Satisfaction, Genetic Algorithm, Social Responsibility
  • Elnaz Farhang Zad, Reza Ehtesham Rasi *, Davood Gharakhani
    This paper examines the use of hybrid metaheuristic algorithms to optimize order quantity in a single manufacturer-multi-supplier two-level JIT Supply Chain (SC) in the production system. Over the years, production systems have largely been controlled by either Material Requirement Planning (MRP), Just in Time (JIT), or Optimized Production Technology (OPT) paradigm. In the SC environment, traditional material demand planning does not consider the supplier's supply capacity and economic benefits, which is not conducive to the long-term cooperation of upstream and downstream enterprises in the SC. The main goal of this paper is to optimize ordering batches based on MRP and JIT in the SC. There is limited research in designing and optimizing the SC/procurement network. This study is among the first to integrate supplier selection to optimize performance indicators in SC network design, considering the minimization of the total cost of the JIT SC order batch coordination adjustment model. The Bill of Materials (BOM) constraints and MRP formulation principles of product production are followed to minimize the total cost of downstream companies' inventory, transportation, out-of-stock, and SC crashes. The MRP-led SC ordering batch collaborative optimization model is constructed; the manufacturer's main production plan is adjusted to change the procurement plan to obtain supplier supplies according to the scheme, an improved discrete Particle Swarm Optimization (PSO) algorithm and Genetic Algorithm (GA) is designed to solve the model; an example verifies the feasibility of the model. The algorithm's effectiveness is proved by analyzing and comparing the algorithm results.
    Keywords: Material Requirement Planning, Just-In-Time Manufacturing, Particle Swarm Optimization, Genetic Algorithm
  • زهرا شاملو، طاها کشاورز*
    هدف

    سازمان دهی فرآیند انتخاب سفارش، یکی از مهم ترین موضوعات در مدیریت انبار است. به علاوه ترکیب چندین سفارش در یک سفارش می تواند باعث افزایش کارایی عملیات انبار و استفاده بهینه از منابع و نیروی کار شود. این امر موجب کاهش زمان فرآیند انتخاب سفارش و مسافت پیموده شده می شود.

    روش شناسی پژوهش

     در این پژوهش، روشی بر مبنای الگوریتم فرا ابتکاری ژنتیک برای حل مساله دسته بندی سفارشات و مسیریابی جمع کننده ارایه شده است. برای دستیابی به تشابه دقیق تر بین دسته ها، ما علاوه بر تعداد دسته اقلام مشترک، درصد اقلام مشترک در سفارشات را نیز در نظر گرفتیم.

    یافته ها

    روش پیشنهادی این پژوهش با ترکیب الگوریتم های نزدیک ترین همسایه، بزرگ ترین شکاف، و S-شکل مقایسه شده است. نتایج آزمایش بر روی مجموعه داده های تصادفی نشان داده است که الگوریتم ژنتیک، راه حل های سریع و موثری ارایه می دهد. با ارزیابی و تحلیل حساسیت پارامترها، مشاهده شد که فاصله ی طی شده توسط روش ترکیبی ژنتیک %18 بهتر از ترکیب الگوریتم های نزدیک ترین همسایه، بزرگ ترین شکاف و S-شکل است.

    اصالت/ارزش افزوده علمی

    در این مقاله از الگوریتم ژنتیک ترکیبی مبتنی بر شاخص مشابهت برای مساله دسته بندی سفارشات مشترک و مسیریابی جمع کننده در انبارها به طور هم زمان استفاده شده است.

    کلید واژگان: مدیریت انبار، دسته بندی سفارش، مسیریابی جمع کننده، شاخص مشابهت، الگوریتم ژنتیک
    Zahra Shamlou, Taha Keshavarz *
    Purpose

    Organization of the order selection process is one of the most important issues in warehouse management, and combining several customer orders in one order can increase the efficiency of warehouse operations and better use of resources and labor. It also reduces the time of the order selection process and the distance traveled.

    Methodology

    In this research, we have presented a method to solve the problem of order batching and collectors routing. A meta-heuristic based on the genetic algorithm is proposed in this research. For a more accurate comparison, in addition to the category number of common items, we also considered the percentage of common items in each order.

    Findings

    The proposed method in this research has been compared with the combination of Nearest Neighbor (NN), Largest Gap, and S-shape algorithms. The test results on the random data sets have shown that the genetic algorithm provides fast and effective solutions. By evaluating the sensitivity analysis of the parameters, it was observed that the distance covered by the combined genetic method is better than the S-shape+Largest Gap+NN method.

    Originality/Value

     In this article, the genetic algorithm is used for the problem of classification of joint orders and routing of collectors in warehouses at the same time.

    Keywords: Warehouse Management, Order Batching, Collector Routing, Similarity Index, Genetic Algorithm
  • Ilkay Saracoglu *
    Uncertainty and variability in demand and supply processes make it difficult for companies to make inventory management decisions. In this study, a model is developed that will provide the maximum service level of a pharmaceutical warehouse under the budget constraint, taking into account stochastic demand. Due to stochastic demand, the chance constraint programming approach is used to achieve the desired service level at different levels. In this study, the problem of a pharmaceutical warehouse that supplies medicines to pharmacies and hospitals is considered as a real-world problem. The model is designed as a dynamic programming model based on periods. Since there are thousands of drugs in the pharmaceutical warehouse, as the number of products increases, it becomes difficult to find the appropriate solution in an acceptable time. The model is first solved as a mixed integer linear programming model in Lingo. A genetic algorithm (GA) approach is then proposed for large-scale problems. The simulation optimization method also applied to the problem and compared with the optimization method and GA. The GA approach yields better results in the shortest time as the number of periods increases. The developed integrated model demonstrated a numerical example in a pharmaceutical warehouse and was solved using three different approaches. This study is of great importance in terms of providing results that will enable managers to decide the amount of items they should keep in their warehouses by using their budgets in the most efficient way. Nine different scenarios have been derived with various chance constraint risk factors and budget values. Scenario analysis has revealed that the budget has a significant impact on the results at a 95% confidence level. If a pharmaceutical warehouse increases its budget by 10%, it can reduce its total annual inventory carrying costs by 70%.
    Keywords: Inventory Management, Stochastic Demand, Chance-Constrained Approach, Genetic Algorithm
  • مریم گنجی، محمدحسین کریمی گوارشکی، جعفر قیدرخلجانی*، مرتضی عباسی

    امروزه با پیچیده تر شدن سیستم ها مفهوم قابلیت اطمینان و بهینه سازی مورد پژوهش و بررسی قرار گرفته است. در مراحل اولیه ی طراحی سیستم بسیاری از ویژگی های سیستم عدم قطعیت همراه است. از ان جا که استفاده از رویکرد احتمالی در حل مسائل قابلیت اطمینان دارای محدودیت هایی است و لذا استفاده از رویکرد فازی برای حل مسائل بهینه سازی قابلیت اطمینان بسیار کاراتر است. یکی از راه های بهینه سازی قابلیت اطمینان تخصیص افزونگی است. در پژوهش حاضر، مساله ی تخصیص قابلیت اطمینان - افزونگی با دو استراتژی فعال و استراتژی ذخیره- سرد با رویکرد اعداد فازی مثلثی در استفاده از پارامترهای توابع خرابی و محاسبه ی قابلیت اطمینان مورد بررسی قرار گرفته است. برای حل مساله ی فوق از الگوریتم ژنتیک استفاده گردیده است. نتایج حاصل با نتایج حاصل از حل به روش دقیق مقایسه شده و از نتایج حاصل از حل مدل قطعی بسیار کاراتر است.

    کلید واژگان: : مساله تخصیص قابلیت اطمینان- افزونگی، اعداد فازی مثلثی، الگوریتم ژنتیک، استراتژی فعال، استراتژی ذخیره-سرد
    Maryam Ganji, MohammadHossein Karimi Gavareshki, Jafar Gheidar-Kheljani *, Morteza Abbasi

    application of Reliability can be seen in many industrial, communication, In the early stages of system design, many system features such as reliability, weight, cost, and etc are associated with uncertainty due to various reasons such as lifespan, operational conditions, etc. Since the use of the probabilistic approach in solving reliability problems has limitations and can only be used in quantitative analysis of information and in many cases does not produce useful and sufficient results for experts, therefore the use of the approach Fuzzy is much more efficient for solving reliability optimization problems. One of the ways to optimize the reliability is to allocate redundancy. When using redundant components in a subsystem, how the redundant components are used is particular importance. In reliability-redundancy allocation problems, the reliability of components is not known in advance and is considered as a decision variable. In the current research, the reliability-redundancy allocation problem has been investigated with two active and cold-standby redundancy strategies and the triangular fuzzy number approach has been used in using the parameters of probability functions and reliability calculation in two model problems and an industrial system. Genetic algorithm has been used to solve the problem. In the implementation of the genetic algorithm, the the random, tournament and roulette wheel methods has been used to select parents and different types of mutation and crossover operators have been used to produce children. The results are more efficient than the results obtained from solving the deterministic model.

    Keywords: Reliability-redundancy Allocation Problem, triangular fuzzy numbers, Genetic Algorithm, active strategy, cold -standby strategy
  • Marjan Gharavipour, Mohsen Sheikh Sajadieh *, Matineh Ziari

    Hub networks play a crucial role in optimizing transportation flow and reducing overall costs by efficiently connecting origins and destinations through strategically placed hub nodes. The decision of hub location carries significant long-term implications and necessitates consideration of various factors within an uncertain environment. This paper addresses the hub arc location problem in hub networks, considering setup costs, isolated hubs, and uncertain flows between nodes. To tackle this challenge, a two-stage stochastic programming model is formulated to incorporate the uncertainty in flow volumes. Additionally, a robust optimization approach is proposed to enhance the resilience of hub location decisions against uncertain scenarios. The problem is solved using a tailored Genetic algorithm, which achieves optimal solutions with high quality and reasonable computational time. The results demonstrate the effectiveness of the proposed methodology in handling the uncertain nature of the hub location problem, contributing to the advancement of transportation planning and logistics optimization. The findings provide valuable insights for practical applications in real-world scenarios, offering a framework for decision-makers to make informed choices regarding hub network design and location. By integrating uncertainty and robust optimization techniques, this paper offers a comprehensive approach to address complex transportation network problems and improve overall efficiency in transportation systems.

    Keywords: Hub Arc Location, Isolated Hub, Uncertainty, Robust Optimization, Min-Max Regret Model, Genetic Algorithm
  • Gholamreza Farahani*, Ameneh Farahani

    Nowadays, wireless sensor networks (WSNs) are widely used in different sectors. The problem in these networks is the non-rechargeable batteries of these sensors, which limit the lifetime of the network. Therefore, the optimal energy consumption of sensors is an open research topic. In this paper, a new algorithm with the Development of Genetic Algorithm with the Floyd Warshall (DGAFW) has been proposed. Using the proposed DGAFW algorithm, the number of clusters and nodes assigned to each cluster is first determined with the Floyd Warshall algorithm and then the Cluster Head (CH) is selected using fuzzy logic. Finally, the optimal placement of the base station is specified by the combination of the Genetic Algorithm and the Floyd Warshall. The DGAFW algorithm is based on minimizing the distance of sending multi-hop messages. The simulation is carried out in MATLAB 2023a online software. The simulation results obtained from the DGAFW algorithm have been compared based on the distance, the amount of remaining energy in each round, and the number of rounds of network activity in the case where the location of the base station is fixed or randomly determined in each round. The results obtained show that the DGAFW algorithm compared to the case of random base station and fixed station respectively, has 12.7% and 14.3% shorter average message-sending distance in each round, 14.7% and 19.1% more residual energy and also 36% and 48% more rounds of network activity.

    Keywords: Floyd Warshall Algorithm, Fuzzy Logic, Genetic Algorithm, Mobile Base Station, Wireless Sensor Networks
  • Alireza Rashidi Komijan*, Mehdi Razi, Peyman Afzal, Vahidreza Ghezavati, Kaveh Khalili Damghani

    Logistics in upstream oil industry is a critical task as rigs need consistent support for ongoing production. In this paper, a multi-period, multi-product and multi-hub routing and scheduling model is presented for offshore logistics problem. As rigs can be served in specific time intervals, time windows constraints are considered in the proposed model. Despite classic VRP models, vessels are not forced to return hubs at the end of duty days. Also, a vessel may leave and return back to hubs several times during the planning horizon. Moreover, the model determines which vessels are applied in each day. In other words, a vessel may be applied in some days and be inactive in other days of planning horizon. To develop a compromise model, fueling issue is considered in the model. As a rig can be supplied by different vessels in real world cases, the proposed model is split delivery. Based on these challenges and contributions, this research deploys an integrated optimization of routing and scheduling of vessels for offshore logistics. This paper deals with a combinatorial optimization model which is NP-hard. Hence, Genetic Algorithm is applied as the solution approach. The average gap between objective functions of GAMS and GA is only 1.18 percent while saving CPU time in GA is much more than GAMS (about 78.16 percent on average). The results confirm the applicability and efficiency of the GA.

    Keywords: Routing, Scheduling, Mathematical Model, Offshore Logistics, Genetic Algorithm
  • Mohammad Shafiekhani, Alireza Rashidi Komijan *, Hassan Javanshir

    The process of transferring money from the treasury to the branches and returning it at specific and limited periods is one of the applications of the Vehicle Routing Problem (VRP). Many parameters affect it, but choosing the right route is the key parameter so that the money delivery process is carried out in a specific period with the least risk. In the present paper, new relationships are defined in the form of three concepts in order to minimize route risk. These concepts are: 1) the vehicle does not travel long routes in the first three movements, 2) a branch is not served at the same hours on two consecutive days, and 3) an arc should not be repeated on two consecutive days. The proposed model with real information received from Bank Shahr has been performed for all branches in Tehran. Because the  VRP is an NP-Hard problem, a genetic algorithm was used to solve the problem. Different issues in various production dimensions were solved with GAMS and MATLAB software to show the algorithm solution quality. The results show that the difference between the genetic algorithm and the optimal solution is an average of 1.09% and a maximum of 1.75%.

    Keywords: Genetic Algorithm, Route risk, Vehicle routing, The problem of carrying cash
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال