stochastic dynamic programming
در نشریات گروه صنایع-
بهره وری سیستم های تولیدی به برنامه ریزی مناسب در زمینه های مختلفی ازجمله تولید، نگهداری و تعمیرات، کنترل موجودی و... وابسته می باشد. باتوجه به تاثیر عمده و مستقیم برنامه تولید بر سایر زمینه ها، لازم است این برنامه با رویکرد مناسبی تهیه شود تا بتوان سیستم های تولیدی را به درستی مدیریت نموده و هزینه ها را تا حد امکان کاهش داد. محدودیت هایی مانند لزوم تامین مقدار مشخصی از تقاضا در یک بازه زمانی مشخص، احتمال تولید محصولات معیوب و تحمیل هزینه های ناشی از راه اندازی مکرر سیستم، مدیران را در ارائه یک برنامه دقیق با چالش مواجه می نماید. در این پژوهش، سعی بر آنست که با بهره گیری از فرآیند تصمیم گیری مارکوفی، روند تولید در یک سیستم تک محصولی چنددوره ای و با لحاظ کردن محدودیت های فوق الاشاره برنامه ریزی شود. در مساله پیش رو با استفاده از تکنیک برنامه ریزی پویای تصادفی، بهترین اقدام ممکن، انتخاب و به عبارتی بهترین حجم تولید برای هر دوره تعیین خواهد شد. هدف، تعیین حجم تولید در هر دوره و به ازای حالات مختلف، به گونه ای است که بتوان در انتهای دوره های مجاز تولید، با کمترین هزینه، کل تقاضا را پوشش داد. اثربخشی مدل با حل یک مثال عددی، بررسی و تحلیل اثرات تغییر پارامترها بر نتایج مساله ارائه شده است. نتایج نشان می دهد که بین متوسط نرخ هزینه و هزینه های مربوط به راه اندازی سیستم و تولید هر واحد محصول رابطه مستقیمی برقرار و ارتباط نرخ مذکور با احتمال تولید محصولات سالم و ظرفیت تولید، معکوس می باشد. افزایش ظرفیت تولید بعد از آستانه معینی، تاثیری بر متوسط نرخ هزینه نخواهد داشت.کلید واژگان: فرآیند تصمیم گیری مارکوفی، برنامه ریزی پویای تصادفی، برنامه ریزی تولید، تصمیمات متوالیJournal of Industrial Engineering Research in Production Systems, Volume:11 Issue: 23, 2024, PP 121 -137Productivity of production systems depends on proper planning in various fields such as production, maintenance and repairs, inventory control, etc. Considering the major and direct impact of the production plan on other fields, it is necessary to prepare this plan with a suitable approach so that the production systems can be properly managed and costs can be reduced as much as possible. Limitations such as the need to supply a certain amount of demand in a certain period of time, the possibility of producing defective products, and the imposition of costs due to frequent system setup, make managers a challenge in providing an accurate plan. In this research, an attempt is made to plan the production process in a multi-period single product system by taking advantage of the Markov decision process and taking into account the above-mentioned constraints. In the following problem, using the stochastic dynamic programming technique, the best possible action will be selected and in other words, the best production volume will be determined for each period. The goal is to determine the volume of production in each period and for different states, in such a way that at the end of the permitted periods of production, the entire demand can be covered with the lowest cost. The effectiveness of the model is examined by solving a numerical example and analysis of the effects of changing parameters on the results of the problem has been presented. The results show that there is a direct relationship between the average cost rate and the costs related to setting up the system and producing each product unit, and the relationship between the said rate and the probability of producing healthy products and the production capacity is inverse. Increasing the production capacity after a certain threshold will not affect the average cost rate.Keywords: Markov Decision Process, Stochastic Dynamic Programming, Production Planning, Sequential Decisions
-
در بسیاری از صنایع، ظرفیت تولید به دلیل زوال ماشین، کاهش می یابد. در مقابل، نت پیش گیرانه وضعیت ماشین را بهبود می بخشد؛ اما خود بخشی از ظرفیت تولید را اشغال می کند. یکی از راه های مواجهه با این مسیله، نت مبتنی بر شرایط با بازرسی های گسسته است. در این مقاله یک سیستم تولید تک محصول در شرایط زوال مارکوفی ماشین و عدم قطعیت تقاضا در نظر گرفته شده است. هدف، برنامه ریزی هم زمان بازرسی ها و نت پیش گیرانه در یک افق متناهی است که متوسط مجموع هزینه های بازرسی، نت و تولید از دست رفته را کمینه کند. بدین منظور یک مدل برنامه ریزی پویای تصادفی ارایه شده است که نتایج عددی حاصل از حل آن نشان می دهد اولا متوسط هزینه ی کل نسبت به تقاضا و وضعیت ماشین غیرنزولی است؛ ثانیا در زمان بازرسی، هر چه تقاضا بیشتر باشد یا ماشین در وضعیت بدتری قرار داشته باشد، نت پیش گیرانه باید زودتر یا در زمانی مشابه اجرا شود.
کلید واژگان: برنامه ریزی بازرسی ها، نگهداری و تعمیرات مبتنی بر شرایط، برنامه ریزی پویای تصادفیIn many industries, some of production capacity will be out of reach when a machine deteriorates. Preventive Maintenance (PM) will enhance the machine condition, but it occupies some of production capacity. The PM will reduce the production capacity and will cause the customer's order delay if it is unnecessary, in contrast the probability of unexpected failure will be increased and will have the same or worst consequences if the PM is too late. One of the ways to deal with this problem is Condition-Based Maintenance with Discrete Monitoring (CBMWDM) whose main challenge is to find an optimal inspection scheme. If the time interval between inspections is too short, the inspection cost will be increased although it will diminish unnecessary PMs and unexpected failures. On the other hand, if the interval between inspections is too long, the sum of unexpected failure and backorder costs will be increased although the cost of inspection will be reduced. Hence, simultaneous planning of the inspections and PM actions should be emphasized. In this paper, a single product single machine system with Markovian deteriorating conditions and demand uncertainty is considered. The main objective is to integrate the inspections and maintenance planning in a tactical level and finite horizon that minimizes the average cost of inspections, maintenances, and backorders. For this purpose, a stochastic dynamic programming model is presented whose structure is dependent to appointed inspection scheme. The state variable of the model is an ordered pair whose components represent the demand and machine condition. The demand is a discrete random variable with arbitrary distribution and the machine condition will be determined after each inspection. Corresponding to each inspection scheme and for each outcome of the state variable, optimal PM decision is obtained and consequently the optimal inspection scheme is determined. The optimal inspection scheme and corresponding PM decisions determine simultaneous inspections and preventive maintenance planning. The strategy of the new model is analyzed for a six-month horizon. Numerical results of the model show that the total average cost is non-decreasing in machine state and demand. Secondly, at the time of inspection, the preventive maintenance should be executed at the same time or earlier if machine state is worse or demand is more.
Keywords: Inspection planning, condition based maintenance, stochastic dynamic programming -
In this paper, a novel quadratic assignment-based mathematical model is developed for concurrent design of robust inter and intra-cell layouts in dynamic stochastic environments of manufacturing systems. In the proposed model, in addition to considering time value of money, the product demands are presumed to be dependent normally distributed random variables with known expectation, variance, and covariance that change from period to period at random. This model is verified and validated by solving a number of different-sized test problems and a real world problemas well as doing sensitivity analysisby using the analysis of variance (ANOVA) technique.The validation process will be ended by investigating the effect of considering dependent product demands and time value of money (interest rate) on the total cost. Dynamic programming andsimulated annealing algorithms programmed in Matlab are used to solve the problems.Some conclusions can be summarised as follows: (i) the simulated annealing algorithm has a performance as good as the dynamic programming algorithm from solution quality point of view; (ii) the simulated annealingis a robust algorithm; (iii) different values of the input parameters lead to design of different facility layouts; (iv) total cost of inter and intra-cell layouts is affected by the interest rate and the percentile level; and (v) the proposed model can be used in both of the stochastic and deterministic environments.Keywords: simulated annealing, Stochastic dynamic programming, robust cell layout
-
In any supply chain, distribution planning of products is of great importance to managers. With effective and flexible distribution planning, mangers can increase the efficiency of time, place, and delivery utility of whole supply chain. In this paper, inventory routing problem (IRP) is applied to distribution planning of perishable products in a supply chain. The studied supply chain is composed of two levels a supplier and customers. Customers locations are geographically around the supplier location and their demands are uncertain and follow an independent probability distribution functions. The product has pre-determined fixed life and is to be distributed among customers via a fleet of homogenous vehicles. The supplier uses direct routes for delivering products to customers. The objective is to determine when to deliver to each customer, how much to deliver to them, and how to assign them to vehicle and routes. The mentioned problem is formulated and solved using a stochastic dynamic programming approach. Also, a numerical example is given to illustrate the applicability of proposed approach.Keywords: Distribution Planning, Perishable Products, Stochastic Dynamic Programming, Stochastic Inventory Routing Problem
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.