computational fluid dynamics
در نشریات گروه عمران-
In this research, we investigated the three-dimensional time averaged flow pattern around a single straight groyne. To measure the three-dimensional velocity components in the laboratory, we utilized an Acoustic Doppler Velocimeter (ADV). We employed Computational Fluid Dynamics (CFD) and Artificial Neural Network (ANN) techniques to simulate the crucial flow characteristics. To validate these methods, we compared the simulation results with the measured data. The findings demonstrate that the ANN approach, with R2 values of 0.9152, 0.9150, and 0.9315, outperforms the CFD model, with R2 values of 0.8332, 0.8726, and 0.8051, in the prediction of the u and v velocity components as well as the velocity magnitude. The transverse velocity profiles indicate that the ANN method accurately predicts the velocity components and velocity magnitude, whereas the CFD method exhibits significant disparities from the measured data, particularly in the prediction of longitudinal and vertical velocity components, especially in the near-bed regions. The ANN method and the laboratory data display variations in their patterns across the shear layer and at the flow separation boundary, while the velocity profiles in the CFD method demonstrate a consistent increase from the right wall of the channel toward the main flow zone. Other flow features around the groyne, such as horseshoe vortex, secondary flow, clockwise and counterclockwise rotational flows around the groyne head and the length and precise center of the circulation zone are reasonably predicted by the ANN method.Keywords: Groyne, Computational Fluid Dynamics, Artificial Intelligence, Horseshoe Vortex
-
کاویتاسیون پدیده یی است که طی آن با حرکت جریان و کاهش فشار مایع به فشار بخار اشباع سیال در مناطق مستعد، حباب هایی از هوا در طی جریان ایجاد می شوند، که پس از رسیدن به مناطقی با فشار بالاتر شکافته و باعث آزاد شدن انرژی زیادی از جانب سیال می شوند، که با برخورد مایکروجت های مذکور به جداره ها، باعث ایجاد لرزش و سروصدا و آثار مخربی، از جمله: فرسایش سازه یی پروانه های کشتی ها، پره های پمپ ها و سریز سدها و همچنین کاهش راندمان و اختلال در عملکرد دستگاه های هیدرولیکی می شوند. در پژوهش حاضر، به صورت عددی و با استفاده از نرم افزار A N S Y S F L U E N T بررسی و مدل های مختلف کاویتاسیون در هندسه های متفاوت مطالعه و با هم مقایسه شده اند. همچنین نتایج نشان داده اند که تشکیل پدیده ی کاویتاسیون در گلویی 10 سانتی متر نسبت به 5 سانتی متر به میزان 5٫88\٪، در گلویی 10 سانتی متری نسبت به بدون گلویی به میزان 64٫71\٪ و در گلویی 5 سانتی متری نسبت به بدون گلویی به میزان 62٫5\٪ تغییر یافته است.کلید واژگان: کاویتاسیون، جریان دوفازی، دینامیک سیالات محاسباتی، فشار بخار اشباعCavitation is a phenomenon during which, with the movement of the flow and the reduction of the liquid pressure to the saturated vapor pressure of the liquid in susceptible areas, bubbles of air are formed during the flow. The microjet becomes full of energy with the fluid, which when these micro jets collide with the walls, causing vibration and noise and destructive effects such as structural erosion of ship propellers, pump blades, and dams, as well as reducing efficiency, and malfunction of hydraulic devices. This research aims to study different simulation models of the cavitation phenomenon and compare them in the way of cavitation cloud creation and expansion and the effect of this phenomenon on the flow. The present research has been analyzed numerically using ANSYS FLUENT software. In this research, an attempt has been made to study and compare different cavitation models in various geometries. Also, in one example, the results of the numerical model have been compared with the results of the laboratory model. The results showed that the formation of cavitation phenomenon in 10 cm throat compared to 5 cm by 5.88%, in 10 cm throat compared to without throat by 64.71%, and in 5 cm throat compared to without throat by 5.62% has changed.Keywords: Cavitation, Two-Phase Flow, Computational Fluid Dynamics, Saturated Vapor Pressure
-
افزایش جمعیت در مناطق شهری و وقوع روزافزون سیلاب های شهری نیازمند ارزیابی دقیق تر برای درک بهتر فرآیندهای هیدرولیکی غالب خطر سیل می باشد. در تحقیق حاضر با استفاده از دینامیک سیالات محاسباتی به بررسی تاثیر تغییرات دبی جریان ورودی بر ویژگی های سیل در یک بلوک شهری پرداخته شده است. مدلسازی ها در شرایط جریان پایدار، با استفاده از 7 دبی جریان در ورودی ها با هندسه ثابت بلوک شهری انجام شد. نتایج اعتبارسنجی مدل عددی نشان داد که مدل آشفتگی پروفیل سرعت نزدیک سطح آب و سرعت متوسط گیری شده در عمق را با خطای نسبی 3 و 8/6 درصد نسبت به مدل آزمایشگاهی، دارای همبستگی بیشتری نسبت به سایر مدل های آشفتگی بود. در تمامی مدل ها خیابان راست و بالا دست به ترتیب دارای بیشترین و کمترین میزان عمق، سرعت و عدد پایداری انسان بودند. این در حالی است که خیابان پایین دست با اختلاف 2 تا 3 برابری سرعت متوسط و دارا بودن 3 الی 4 ناحیه خطر برای عابران پیاده دارای بیشترین طیف گستردگی در میزان پارامترهای سیلاب می باشد. همچنین افزایش دبی در ورودی 1 به ازای دبی ثابت در ورودی 2، باعث افزایش ویژگی های سیلابی خیابان های راست و پایین دست و افزایش عمق و کاهش سرعت در خیابان چپ می-گردد. این در حالی است که افزایش دبی ورودی 2 به ازای دبی ثابت در ورودی 1، باعث افزایش ویژگی های سیلابی خیابان چپ و افزایش عمق و کاهش سرعت در خیابان ها راست و پایین دست می گردد. لازم به ذکر است تغییرات دبی در هر دو ورودی تاثیر چندانی بر روی ویژگی های سیلابی خیابان بالا دست ندارد.کلید واژگان: سیل شهری، تغییرات دبی، دینامیک سیالات محاسباتی، عدد پایداریFloods can cause significant damage to goods and people, particularly in densely populated urban areas with high asset values. Flood risk is typically assessed using flow depth, flow velocity, and water level parameters (de Moel et al., 2009). Meja-Morales et al., (2021) investigated the impact of flow exchanges between a porous urban block and surrounding streets and found that porosity significantly affects urban flood flow characteristics. In another study, Meja-Morales et al., (2023) examined the effect of flow instability and open areas in urban blocks on key flood characteristics and reported that the instability level of incoming hydrographs greatly affects the volume of flood water stored in urban blocks. This research aims to evaluate the distribution of flow depth, velocity, and flow patterns in non-porous urban block streets by considering changes in stable inflow. The study seeks to understand multidirectional flow paths caused by the street network and develop a flood risk map for humans using Flow3D software. The validation results of the numerical model showed that the turbulence model had the highest correlation with the laboratory model, with a relative error of 3% and 6.8% for the velocity profile near the water surface and averaged velocity at depth, respectively. In all models, the right and upstream streets had the highest and lowest depth, speed, and human stability number, while the downstream street had the largest range of flood parameters, with 2 to 3 times the average speed and 3 to 4 danger zones for pedestrians. Increasing the flow rate at Inlet 1 for a constant flow rate at inlet 2 increased the flooding characteristics of the right and downstream streets while decreasing the speed in the left street. Conversely, increasing the flow rate at Inlet 2 for a constant flow rate at Inlet 1 increased the flooding characteristics of the left street, decreased the speed in the right and downstream streets, and had minimal effect on the flood characteristics of the upstream street.Keywords: Urban Flood, Discharge Changes, Computational Fluid Dynamics, Product Number
-
سازه هایی با سقف های دهانه بزرگ در برابر باد آسیب پذیر هستند، در این سازه ها به دلیل بار مرده کم، بار باد اثر بیشتری بر روی این نوع سازه ها می گذارد. در محاسبه نیروی باد یکی از ضرایب که به هندسه سازه ارتباط دارد ضریب فشار Cp)) می باشد که این ضریب برای برخی از سازه های متداول در آیین نامه های بارگذاری ارائه شده است، در این تحقیق بررسی جریان باد بر سطح سازه سوله قوسی شکل با سه نسبت ارتفاع به دهانه قوس 1/0و2/0و3/0 با استفاده از آزمایش تونل باد و همچنین مدل سازی عددی بر مبنای روش دینامیک سیالات محاسباتی (CFD) با استفاده از نرم افزار ANSYS صورت گرفته و ضرایب فشار باد بر روی این سازه ها ارائه شده است، مشاهده می شود با افزایش نسبت ارتفاع به دهانه قوس بیشینه ضرایب فشار باد منفی(مکش)، افزایش یافته به نحوی که بر روی محور میانی سازه در حالت 900=α ، بیشینه فشار منفی در سازه 1-S، 2-S، 3-S، به ترتیب برابر 2- و 7/1- و 6/1- است. ضرایب فشار در اضلاع رو به باد عدد مثبت را نشان می دهد که نشان دهنده فشار در این سطوح است، حداکثر فشار مثبت در900=α) حالتی که جهت اعمال باد بر سوله عمود است) رخ می دهد که در این حالت ضریب فشار برابر 1+ است. درسازه1- S (نسبت ارتفاع به دهانه 3/0) ، بیشینه تغییر شکل ایجاد شده به ازای زاویه اعمال باد 400=α است که این میزان 20 درصد بیشتر از حالت 900 α= است.کلید واژگان: تونل باد، ضرایب فشار بار باد، سوله قوسی، دینامیک سیالات محاسباتی، انسیسStructures with large opening roofs are vulnerable to wind, in these structures due to the low dead load, the wind load has a greater effect on these types of structures. In the calculation of wind force, one of the coefficients related to the geometry of the structure is the pressure coefficient (Cp), which is provided for some common structures in the loading regulations. Arch opening of 0.1, 0.2 and 0.3 was done using wind tunnel test and numerical modeling based on Computational Fluid Dynamics (CFD) method using ANSYS software and wind pressure coefficients on these structures are presented, it can be seen that with increasing The ratio of the height to the opening of the arch of the maximum coefficients of negative wind pressure (suction), increased in such a way that on the middle axis of the structure in the state of α = 90o, the maximum negative pressure in the structure S-1, S-2, 3-S, is equal to -2 and It is -1.7 and -1.6. The pressure coefficients on the sides facing the wind show a positive number, which indicates the pressure on these surfaces, the maximum positive pressure occurs at α=90o (the state where the direction of the wind is perpendicular to the shed) and in this case the pressure coefficient is equal to +1. In structure S-1 (height-to-opening ratio 0.3), the maximum deformation created for the wind application angle is α=40o, which is 20% more than α=90 o.Keywords: Wind tunnel, wind pressure coefficients, arc shed, Computational Fluid Dynamics, Ansys
-
Sedimentation due to gravitation is applied widely in water and wastewater treatment processes to remove suspended solids. This study outlines the effect of the inlet and baffle position on the removal efficiency of sedimentation tanks. Experiments were carried out based on the central composite design (CCD) methodology. Computational fluid dynamics (CFD) is used extensively to model and analyze complex issues related to hydraulic design, planning studies for future generating stations, civil maintenance, and supply efficiency. In this study, the effect of different conditions of inlet elevation, baffle’s distance from the inlet, and baffle height were investigated. Analysis of the obtained data with a CCD approach illustrated that the reduced quadratic model can predict the suspended solids removal with a coefficient of determination of R2 = 0.77. The results showed that the inappropriate position of the inlet and the baffle can have a negative effect on the efficiency of the sedimentation tank. The optimal values of inlet elevation, baffle distance, and baffle height were 0.87 m, 0.77 m, and 0.56 m respectively with 80.6% removal efficiency.
Keywords: Sedimentation tank, Particle removal, Central Composite Design, Computational Fluid Dynamics, Flow-3D -
This paper aims to investigate the effects of uncertainty in soil characteristics and dam geometry on seepage flow using the hybrid Multivariate Adaptive Regression Splines (MARS) and Monte Carlo Method (MCM). A computer program based on Darcy flow is developed in the Fortran language to calculate the discharge flow. After validating the numerical FORTRAN code with experimental outputs, firstly, the Deterministic Finite Element Method (DFEM) was used to obtain Seepage Exit Discharge (SED) in Steady State Condition (SSC), and MCM was used for probabilistic analysis to account for uncertainty in random parameters. The program monitored Pore Water Pressure (PWP) changes and integrated them into the time/space domains. To ensure minimal error, the results of the models were compared by Standard Error Calculation (SEC). The research also introduced a new component to compare the seepage flow resulting from the analysis of models in a dimensionless manner called the Effective Discharge MARSplines (EDM). In the present research, the combination of Machine Learning (ML) and MCM algorithms was used in an innovative way for Random Finite Element Method (RFEM) calculations. The results of the research indicate that a 17.9% increase in the Hd/Hu ratio in the deterministic analysis results in a 29.3% decrease in EDM, while in the probabilistic analysis, a similar increase leads to a 19.02% decrease in EDM. Upon comparing deterministic and stochastic models, it can be concluded that deterministic analysis is more accurate and exhibits less error when compared to the probabilistic model.
Keywords: FORTRAN Programming, Seepage Exit Discharge (SED), Two-Phase Soil, Stochastic Analysis, Computational Fluid Dynamics -
The main goal of this research is the performance evaluation of the sampled moment-resisting steel structure against 3D simulated blast loading. In the first stage of the present research, the numerically simulated blast wave is verified by comparing with the relevant renowned numerical and experimental previous researches. In the second stage, the sensitivity of blast-induced pressure to the finite element mesh size and the surrounding air cube dimensions are investigated considering the 3D one-story building block with real dimensions based on Computational Fluid Dynamics (CFD) using AUTODYN hydrocode. The innovation of this stage is to present the optimum mesh size and air cube dimensions for the numerical results compared with the relevant empirical relationships toward the realistic simulation of blast-induced pressure on structures. Finally, in the last stage, the performances of two seismically-designed buildings with 1 and 10 stories against the achieved numerical blast-induced pressure time histories and the empirical formulations, based on the UFC 3-340-02 guideline, are studied. To assess the structural performance, the sampled buildings are modeled using the finite element tool OpenSEES. Performance assessment of sampled structures reveals that empirical formulation of blast loading will lead to underestimation of structural response, especially for the lower scaled distance scenarios.Keywords: numerical simulation, Blast Impact Wave, Computational Fluid Dynamics, Nonlinear time-history Response
-
نیروی باد یکی از بارهای جانبی در طراحی سازه ها محسوب می شود، یکی از پارامترهای محاسبه نیروی باد بر روی سازه ها، ضریب فشار(CP) نام دارد که به هندسه ساختمان مرتبط است ، در آیین نامه ها ضریب فشار ساختمان های متعارف ارایه شده است، در صورت عدم وجود این ضرایب در آیین نامه ها باید از آزمایش تونل باد یا مدل سازی عددی بهره گرفت، در این تحقیق ضرایب فشار باد (CP) بر روی گنبدهای کروی موسوم به گنبد پیازی که در آیین نامه سازه های فضاکار) نشریه 400(تعریف شده است پرداخته می شود، در مدل سازی از روش عددی مبتنی بر دینامیک سیالات محاسباتی(CFD) برای شبیه سازی جریان باد استفاده شده است . مدل مورداستفاده دینامیک سیالات محاسباتی در این تحقیق ، مدل K-ε(Standard) می باشد. همچنین به منظور انجام صحت سنجی نتایج ، ابتدا گنبد کروی با قطر 50 سانتیمتر مدل سازی می شود و نتایج حاصل از مدل سازی عددی با نتایج حاصل از آزمایش تونل باد ارایه شده در مرجع]2[مقایسه شده است . پس از حصول اطمینان از نتایج، مدل سازی عددی، بر روی چهار گنبد با نسبت ارتفاع به دهانه مختلف انجام شده است، با افزایش نسبت ارتفاع به دهانه ماکزیمم فشار منفی(مکش) که در زاویه 900= حاصل می شود، افزایش می یابد به صورتی که در گنبد 122 این مقدار به 2.24- می رسد، همچنین مشاهده می شود که در زاویه150 تا 180 درجه ضریب فشار برای تمامی گنبدها ثابت است و درنهایت معادله حاکم بر ضرایب فشار باد این نوع گنبدها ارایه شده است .کلید واژگان: ضریب فشار باد، دینامیک سیالات محاسباتی، نیروی باد، تونل باد، گنبدهای پیازیWind force is one of the lateral loads in the design of structures. One of the parameters for calculating wind force on structures is called pressure coefficient (CP), which is related to the geometry of the building. The design codes provide the pressure coefficient of conventional buildings. In the absence of these coefficients in the design codes, wind tunnel testing or numerical modeling should be used. Numerical method based on computational fluid dynamics (CFD) has been used in modeling to simulate wind flow.The model used in computational fluid dynamics in this research is the K-ε (Standard) model. The sphere is modeled with a diameter of 50 cm and the results of numerical modeling are compared with the results of the wind tunnel test presented in reference [2]. The dome is made with different height to span ratio, with increasing height to span ratio to maximum The negative pressure (suction) obtained at an angle of 90o increases as this value reaches –2.24 in dome 122, and it is also observed that at an angle of 150o to 180 o the pressure coefficient is constant for all domes. Finally, the equation the wind pressure coefficients of this type of domes is presented.Keywords: Wind pressure coefficient, computational fluid dynamics, Wind force, Wind tunnel, onion dome
-
Wind-induced loads are largely dependent upon the exterior shape of buildings, and one highly effective procedure to mitigate them is to apply aerodynamic shape modifications in the aerodynamic optimization procedure (AOP). This study presents the framework of an AOP for shape modifications of the trilateral cross-section tall buildings. The AOP is comprised of a combination of multi-objective optimization algorithm named non-dominated sorting genetic algorithm II (NSGA-II), artificial neural networks, and computational fluid dynamics. The building shape is designed based on the geometric description of its vertical and horizontal profile using seven geometric parameters (design variables) to apply different types and sizes of modifications. In addition, the mean moment coefficients in drag and lift directions are considered as the objective functions. The proposed procedure investigates the effect of the three types of modifications including varying cross-section sizes along the height, twisting, and curved-side on the reduction of objective functions. Finally, a set of optimal building shapes is presented as the Pareto front solutions, which enables the designers to select the optimal shape of the building with additional considerations. The results indicate the high capability of the proposed framework to make appropriate use of various aerodynamic modifications in order to upgrade the aerodynamic performance of the trilateral cross-section tall buildings.Keywords: Wind Load, Tall Building, Computational fluid dynamics, multi-objective optimization, Artificial Neural Networks
-
در این تحقیق، میزان گشتاور انتقال یافته بهینه، از تکانه جریان آب جاری در یک کانال روباز، به پنج نوع توربین استوانه ای، مورد بررسی قرار گرفته است. هدف از انجام پژوهش، یافتن توربین آبی مناسب، جهت تولید انرژی الکتریکی بیشینه می باشد. برای انجام این کار، یک توربین استوانه ای سه بعدی، به قطر و طول 1 متر، با پنج نوع پره، به شکل های مختلف، با کمک روش عددی حجم محدود، شبیه سازی گردید. مجموعه توربین و پره ها، در یک کانال مستطیلی روباز بدون شیب، به طول 10 متر و عرض 3 متر، و سرعت جریان 2 متر بر ثانیه، قرار گرفته اند. مجموعه توربین و پره ها، به طریقی طراحی شده اند که با توجه به وزنشان، به صورت شناور در عمق های استغراق مختلف، داخل کانال قرارگیرند، و با تغییر عمق جریان، عمق استغراق مورد نظر ثابت بماند. با توجه به مقدار تکانه جریان آب جاری در کانال، میزان گشتاور انتقال یافته از جریان به پره های پنج نوع توربین مورد نظر، محاسبه شده و مقدار بیشینه آن بدست آمد. نتایج نشان می دهد که، بکارگیری توربین نوع پنج، با پره هایی گسترش یافته به شکل نیم دایره در امتداد محور توربین، به تعداد 21 عدد، و قطر داخلی 10.5 سانتیمتر، بیشترین مقدار گشتاور، برابر 458.96 نیوتن در متر را، حاصل می آورد. لذا می توان به کمک آن، ضمن استفاده از یک مولد الکتریکی مناسب، انرژی الکتریکی بیشینه را تولید نمود.
کلید واژگان: توربین آبی شناور، دینامیک سیالات محاسباتی، جریان کانال روبازIntroductionIn this research work, the maximized transmitted torque due to the impulse from flowing water in an open channel has been studied for five types of cylindrical turbines to find the best water turbine in terms of maximum produced electrical energy. For this purpose, using numerical finite volume method, a set of turbine and blades, consisting of a 3-dimensional cylindrical water turbine of equal diameter and length (1m), with five different blade configurations, has been simulated in a 10 m long and 3 m wide rectangular open channel with no inclination, subjected to a water flow of 2 m/s velocity. Considering the weight of various elements, the set of turbine and blades has been designed so that it remains floating in the channel at various immersion depths. Furthermore, with change in flow depth, the immersion depth remains constant. Considering the magnitude of the flowing water impulse in the channel, the corresponding torque transmitted from the water to the blades of the five types of turbines was determined and the maximum torque value was obtained.
MethodologyIn the present research, five types of blades, attached to a hollow cylindrical turbine of 1 m length and 1 m diameter, have been used. The turbine floats on water at a particular depth in an open channel. The water speed in the open channel determines the torque due to the impulse from the flowing water. Considering the various blades, the resultant torque has been studied numerically using two-phase flow finite volume method. The material for the construction of the cylindrical turbine and the blades is dense polyethylene having a density of with 950 kg/m3. Moreover, the fluids considered in the finite volume numerical computations are water with a density of 998 kg/m3, and air with a density of 1 kg/m3 at a constant temperature of 20° Celsius. The hollow turbine cylinder has a volume of 0.78 m3 and is filled with air. The three-dimensional flow channel, in which the turbine is placed, is a rectangular concrete channel of 10 m length and 3 m width, through which water flow at a depth of 35 cm. To avoid the effect of surrounding walls on the transfer of the flow impulse to the turbine, width of the channel has been considered slightly oversized. The roughness values for the bottom surface of the concrete channel and the turbine walls and the blade set is 1 mm and 0.01 mm, respectively. The depth of the channel is constant at 1 m, which is equivalent to the average depth of most city open channels.
Results and DiscussionThe difference between type 1 and type 2 turbines is in the blade’s angle along the turbine rotational axis. As a result, the produced torque by type 1 turbine is more than that of type 2. On one hand, increase in contact area between the blades and the flowing water in the channel results in higher torques. On the other hand, the angular shape of the increases the slip between the flow and the blades, which reduces the conversion of kinetic energy into static energy. Ultimately, the result of the above two phenomena in type 2 turbine is a reduction in the produced torque to about 15 N/m. In type 3 turbine, an increase in the produced torque was achieved through the increase in the number and shape of the turbine blades. Hence, the implementation of the aforementioned changes relative to type 2 turbine resulted in an increase in the produced torque to about 56 N/m. Therefore, increase in the number of blades and change in the blade shape in this type of turbine compensated for the effects of blade angle elongation in type 2 turbine. Furthermore, in type 4 turbine, the internal diameter of the blades was reduced, while the number of blades was increased, blades distribution angle was changed from 45° to a straight configuration, and the contact area also decreased. Consequently, the amount of flow slip along the blades also decreased. Specifically, the result of all the above mentioned changes in type 4 turbine was to reduce the produced torque to about 14 N/m compared to type 3 turbine. Therefore, the combined effect of reduction in the contact area and reduced internal diameter of the turbine blades is more dominant than the combined effect of increased number of blades and reduced flow slip on the blades. In type 5 turbine, number of blades was reduced by 10 and the blades internal diameter was tripled relative to type 4 turbine, which resulted in a significant increase in the produced torque. Therefore, type 5 turbine, as a floating turbine, may be recommended for production of electric energy in open channels.
ConclusionConsidering the results of the calculations, type 5 turbine with 21 semicircular shape blades, 11 cm in external diameter and 10.5 cm internal diameter, has a higher capacity to produce more torque compared to other types of turbine studied. The factors affecting the final produced torque include the contact area between the blades and the flowing water in the channel, the length of the blades along the turbine axis, the extent of slip of flow when facing the turbine blades, and the number of blades. The produced torque by type 5 turbine is 458.96 N/m, which is the highest among the turbine types studied in this research.
Keywords: Hydraulic Turbine, Computational Fluid Dynamics, Open channel flow -
برای حفاظت سازه های هیدرولیکی نظیر سرریز ها، شوت ها و تخلیه کننده های تحتانی در مقابل کاویتاسیون، به طور معمول مقداری هوا به جریان در نواحی با شاخص کاویتاسیون کمتر از مقدار بحرانی، اضافه می گردد. با استفاده از هوادهنده ها می توان از فرسایش های ناشی از کاویتاسیون بر سطوح سرریز، جلوگیری نمود. معمولا هوادهنده ها روی کف و گاهی بر دیواره های جانبی سرریز نصب و باعث جدایی جریان های با سرعت بالا از سطح سرریز شده و با وارد کردن مصنوعی هوا به جریان، از فرسایش در مرزهای صلب جلوگیری می کنند. بیشتر آزمایش های انجام شده ورود و خروج هوا بر غلظت متوسط هوای جریان متمرکز بوده و نیاز به اندازه گیری مقدار و نحوه خروج هوا از جریان می باشد. لذا در تحقیق حاضر با استفاده از داده های آزمایشگاهی فیشر (2007) جهت شبیه سازی عددی جریان عبوری از هواده، به بررسی تغییرات غلظت هوا در طول بستر شوت پرداخته شده است. بدین منظور جهت مدل سازی جریان دوفازی هوا-آب از نرم افزار FLUENT استفاده شده و طول پرش جت جریان به عنوان عاملی مهم و تاثیرگذار در ورود هوا به جریان ملاک واسنجی قرار گرفته است. با توجه به اهمیت نقطه برخورد جریان به بستر شوت، نقطه مذکور به عنوان مرجع محاسبات در رابطه قرار گرفت. به طور کلی نتایج نشان داد که غلظت هوای بستر پایین دست هواده ها با افزایش عدد فرود، ارتفاع رمپ، ارتفاع پله و زاویه رمپ افزایش و با افزایش ارتفاع آب بالادست هواده، کاهش می یابد و با افزایش شیب شوت ورود هوا به جریان افزایش یافته و تغییرات غلظت هوا کاهش می یابد، لذا نیاز به حضور هواده کمتر می گردد.
کلید واژگان: حداقل غلظت هوا، کاویتاسیون، دینامیک سیالات محاسباتی، سرریز، هوادهIntroductionDams have played an important role in the development of human civilization, the simplest of which is the provision of water resources in agriculture, industry and drinking. The share of earthen and gravel dams, which often have tunnel overflows and shoots, is significant. In dams with this type of overflow, increasing the height of the dam increases the flow velocity on the shot and increases the probability of cavitation. To protect hydraulic structures such as overflows, shoots, and lower discharges from cavitation damage, some air is typically added to the flow in areas with a cavitation index below the critical value. By using aerators, erosions that occur due to cavitation on overflow surfaces can be prevented. Aerators are usually installed on the floor and sometimes on the side walls of the overflow, separating the high-velocity currents from the surface of the overflow and preventing erosion at the rigid boundaries by artificially introducing air into the flow.
MethodologyMost air inlet and outlet experiments focus on the average concentration of air in the stream and require the measurement of the amount and manner of air out of the stream. Computational fluid dynamics is a relatively new method and a review of studies in numerical modeling of overflows shows that the use of this tool as a research tool in research institutes began and gradually accepted by the hydraulic engineering community. Using computational fluid dynamics alongside physical models is a good way to reduce costs and save time. Due to the high accuracy of this method in determining the jump length of the flow jet, its results can be used to determine the geometric parameters of aerators such as the width of the air distribution duct. As the slope of the shot increases, the entry of air into the stream increases and also the changes in air concentration decrease, so the need for the presence of aerator decreases. Therefore, in the present study, using Fisher (2007) laboratory data to numerically simulate the flow through the aerator, the changes in air concentration along the shoot bed have been investigated. For this purpose, FLUENT software was used to model the two-phase air-water flow and the length of the flow jet jump was used as an important and effective factor in the entry of air into the flow. . Although aerators have been proposed since 1970’s but today there is no any reliable design guideline for determinate aerator spacing.
Results and DiscussionBy determining the trend of changes in bed air concentration, the distance between two aerators can be determined. The air in the stream causes the stream to condense and dampens the shocks caused by the explosion and bursting of the bubbles, thus reducing the damage caused by cavitation; On the other hand, if more than necessary to prevent cavitation, air enters the stream, causing the flow to become bulky, and higher walls should be considered for the shot, which is not economically appropriate. Therefore, it is important to determine the minimum air concentration required to prevent cavitation damage. Determining the location of the second aerator can be determined according to the minimum required air concentration and the length of the flow jet for the height and landing number upstream of the first aerator. And the ramp angle increases and decreases as the water level above the aerator increases. Determining how the air concentration changes downstream of the shot aerator is important for calculating the distance of the aerators from each other, and FLUENT models the process of these changes well. The comparison between numerical and laboratory results shows a very good agreement between the laboratory and numerical model. Finally, a relation for the distribution of air concentration in the substrate was presented, which has a good fit with laboratory data. Due to the importance of the point of impact of the current to the shooting bed (sudden outflow of air due to the impact), the point was used as a reference for calculations.
ConclusionThe comparison between numerical and laboratory results shows a very good agreement between the laboratory and numerical model. In general, the results showed that the air concentration of the lower bed of the aerators increases with increasing landing number, ramp height, step height and ramp angle, and decreases with increasing water height upstream of the aerator, and increases with increasing slope of the air flow and also changes. The air concentration decreases, so the need for aeration is reduced. Keywords Minimum air concentration, Cavitation, Computational Fluid Dynamics, Overflow, Aeration.
Keywords: Minimum air concentration, Cavitation, Computational Fluid Dynamics, overflow, Aeration -
سرریزهای سیفونی در شرایط وجود محدودیت فضا برای احداث انواع دیگر سرریزها و نیز برای عبور دبی زیاد در دامنه ی هد محدود استفاده می شوند. در نوشتار حاضر، به بررسی هیدرولیکی انواع رژیم های جریان، شامل: جریان زیر اتمسفر، جریان دوفازی و جریان با آب سیاه درسرریزهای سیفونی در شرایط غیردایمی پرداخته شده است. جهت صحت سنجی نتایج شبیه سازی عددی، از نتایج آزمایشگاهی مطالعات پیشین استفاده شده است. جهت انجام شبیه سازی عددی از حل گر سیالاتی ANSYS-CFX که در زمینه ی شبیه سازی جریان های دوفازی، توانایی های بیشتری نسبت به سایر نرم افزارها دارد، استفاده شده است. بررسی نتایج نشان داد که میزان نوسان های فشار در یک دبی مشخص در نقاط مختلف سرریز برای شرایطی که جریان داخل مجرای سرریز در حالت دوفازی است، به مراتب بیشتر از زمانی است که جریان زیر اتمسفر داخل سرریز برقرار است. بیشترین نوسان های فشار که می توانند باعث ارتعاش سازه ی سرریز شوند در قسمت های ورودی و گلوگاه سرریز ایجاد می شوند.
کلید واژگان: حل گر سیالاتی CFX، رژیم های جریان، سرریز سیفونی، شبیه سازی عددی، نرم افزار ANSYSSpillways are used in dam projects to convey flood flows and prevent destructive damages of downstream hydraulic systems, while the construction of other types of spillways is restricted, or there is a need to pass great values of flood discharge with a limited head. Siphon spillway is a kind of dam spillways employed in a number of dam reservoirs. This spillway is applied while the space for constructing other types of spillways is restricted, or when there is a need to pass great values of flood discharge with a limited head. One of the most important defects of this spillway is a complicated fluid-structure interaction due to the establishment of different flow regimes inside the spillway. This situation becomes more complicated when the spillway is not connected to the dam, working individually. Despite the importance of the operation of these hydraulic structures, there is a lack of comprehensive research to investigate the hydraulic behavior of these structures and the flow field around and inside them. In the present study, different unsteady flow regimes including sub-atmospheric flow, two-phase flow, and black-water flow and their effects on the hydraulic characteristics of siphon spillways were investigated. For this purpose, ANSYS CFX software was applied to simulate the flow field in such spillways. To validate the obtained flow regimes, via numerical modeling, experimental results of the former studies were used. Results indicated that the pressure fluctuations were mostly greater beneath the inlet and throat of the spillway compared to the other sections.
Keywords: Siphon Spillway, Fluid-Structure Interaction, Computational Fluid Dynamics, Black-Water Flow -
در پژوهش حاضر، رفتار سازه ی تاج و گلوگاه سرریز نیلوفری در هنگام رخداد سیلاب ارزیابی شده است. سازه ی سرریز با استفاده از روش المان محدود و سیال مخزن سد با روش حجم محدود در نرم افزار ANSYS شبیه سازی شده است. رفتار سازه ی سرریز نیلوفری طی سه سناریو شبیه سازی شده است: الف) سناریوی تحلیل استاتیکی مخزن خالی سد، ب) سناریوی تحلیل استاتیکی مخزن پر که جریان روی تاج سرریز وجود ندارد و ج) سناریوی تحلیل دینامیکی اندرکنش سازه سیال. سناریوی (ج) در دو بخش: 1. شروع حرکت جریان سیلاب بر روی سرریز طی گذر زمان و 2. حالتی که جریان سیلاب بر روی سرریز به تعادل رسیده است، تقسیم بندی شده است. تحلیل سازه ی بتنی به صورت خطی انجام شده است. با توجه به نتایج به دست آمده، بحرانی ترین حالت برای سازه، از لحاظ بیشینه ی تنش کششی به مقدار 5٫3 مگاپاسکال، در بخش اول سناریوی (ج) رخ داده است. همچنین بیشینه ی تنش فشاری به مقدار 12٫3 مگاپاسکال نیز در بخش دوم سناریوی (ج) بوده است.
کلید واژگان: دینامیک سیالات محاسباتی، اندرکنش سازه و سیال، سرریز نیلوفری، تحلیل عددی سازهIn this research, the behavior of the morning glory crest and throat were investigated in the event of flood. Spillway structure and dam reservoir fluid were respectively simulated using the finite element method and finite volume method in ANSYS software. The morning glory structure's behavior was performed in three scenarios: a) the static analysis scenario of the dam empty reservoir, b) the static analysis scenario of the full reservoir while there is no flow over the spillway crest, and c) the dynamic analysis scenario of structure-fluid interaction in two parts: 1- starting of the flood flow on the morning glory spillway, and 2- the steady state flood flow on the morning glory spillway. The concrete structure analysis was linearly done in all three scenarios. Based on the results, the most critical condition for the structure in terms of maximum tensile stress was 5.3 MPa in the first part of the third scenario. The maximum compressive stress was 12.3 MPa in the second part of the third scenario. Spillways are one of the most important and vital structures in the life of a dam. The efficiency and proper functioning of such structures requires a precise and responsible design. The morning glory spillways have a great deal of importance due to the standing structure inside the dam reservoir. The weight and hydrodynamic loading on the body of spillway concrete structure during a flood complicates the interaction analysis of the structure and the fluid. By using numerical methods in computational fluid dynamics and structural analysis, we will be able to predict the behavior of structure and fluid hydrodynamics parameters. In model's fluid domain, choosing the type of Navier---Stokes equations proportional to the efficient RANS mathematical model of turbulence, is very sensitive. Mainly one equation turbulence models such as the Spalart-Allmaras or two-equation models, such as K-Epsilon or K-Omega, are based on Boussinesq hypothesis. Boussinesq hypothesis explains how to estimate the components of the fluid stress tensor for the above-mentioned turbulence equations. This assumption, by simplifying the computation process, only a in some parts of the fluid domain, analyzes the turbulence as anisotropic.
Keywords: Computational Fluid Dynamics, Fluid-Structure Interaction, Morning Glory Spillway, Structural Analysis -
Effect of Porous Media on Hydraulic Jump Characteristics by Using Smooth Particle Hydrodynamics Method
In order to understand the effect of porous media on hydraulic jumps, a smoothed particle hydrodynamics (SPH) model is applied to investigate the characteristics of hydraulic jumps interacting with porous media. Various porosities including cases without an obstacle or with a solid obstacle or porous media are considered. The opening of a gate was altered to adjust the hydraulic jump. The conjugate depth ratio, bottom shear stress distribution, and energy dissipation are reported. In the present study, validations are in a good agreement with previous studies. Overall, the result showed that the average error between numerical and experimental data was less than 7.2%. Energy dissipation is compared among cases with three porosities, with and without a solid obstacle. The porosity of 0.68 is found to dissipate more energy than do other porosities. Thus, porous media can be used to enhance energy dissipation of hydraulic jumps in an open channel. In conclusion, the proposed SPH model can simulate the effect of porous media on hydraulic jump characteristics.
Keywords: Ecological engineering, Free surface flow, Energy dissipation, Porosity, Computational fluid dynamics -
بررسی مسائل چند فیزیکی نظیر بررسی اندرکنش جریان-سازه از اهمیت بالایی در مهندسی مکانیک برخوردار است به صورتی که تحلیل چنین مسائلی توسط روش های مختلف عددی توجه محققین را به خود جلب کرده است. روش هیدرودینامیک ذرات هموار یک روش بدون شبکه کاملا لاگرانژی است که با توجه به سادگی و قابلیت بالای آن مسائل سطح آزاد می تواند در مطالعه مسائل جریان-سازه به کار گرفته شود. در این روش هیچ نیازی به اعمال رفتار خاصی برای شناسایی سطح آزاد وجود ندارد. در این پژوهش با استفاده از روش هیدرودینامیک ذرات هموار برهمکنش میان جریان و سازه در مسائل سطح آزاد مورد مطالعه قرار می گیرد، به صورتی که در ابتدا شبیه سازی مساله شکست سد در بستری نامحدود و خشک با نتایج آزمایشگاهی مقایسه می شود. سپس، پس از اعمال معادلات حاکم بر مسائل الاستیک، ارتعاش تیر یک سر درگیر مورد مطالعه قرار می گیرد. در نهایت با اعمال معادلات حاکم بر مسائل جریان-سازه، شبیه سازی شکست سد روی دریچه الاستیک نشان داده می شود. مقایسه نتایج این شبیه سازی با داده های عددی و آزمایشگاهی موجود، بیانگر این است که روش هیدرودینامیک ذرات هموار قابلیت بالایی در بررسی مسائل اندرکنش جریان-سازه دارد.کلید واژگان: دینامیک سیالات محاسباتی، روش هیدرودینامیک ذرات هموار، اندرکنش جریان - سازه، شکست سدInvestigation of multi-physics problems such as flow-structure interaction (FSI) in free surface is very important in mechanical engineering, whereas numerical simulations of such problems have been widely conducted by researchers. The implementations of CFD in engineering applications are most of the time based on the Eulerian description. In this method, one can focus on flows at a fixed spatial point x at time t and any flow variable Φ is expressed as Φ (x, t). This description has been studied for over fifty years and is clearly understood. Most of commercial codes have been developed by using finite difference, finite element and finite volume approaches. Simulating free surface flow with most Eulerian CFD methods is potentially very difficult as explicit treatment of the free surface is required. Moreover, The problems of most Eulerian and mesh-based numerical methods for complex free surface deformations involves difficulties and complexities of various boundaries remeshing as well as moving boundaries and exact determination of free- surface fluid. Another description of study of CFD is the Lagrangian method where one can follow the history of an individual fluid parameter through the time. In the Lagrangian methods, any flow variable is expressed as Φ (x0, t), where the point vector x0 of the particle at the reference time t = 0. Smoothed Particle Hydrodynamics (SPH) is a meshless and fully Lagrangian method which is able to simulate the FSI problems due to its simplicity and capability, as there is no special treatment needed for the free surface. The current problem in hydrodynamic science and fluid engineering is studied as a complex phenomenon in free-surface flow. Smoothed Particle Hydrodynamics (SPH) is a flexible Lagrangian and meshless technique for CFD simulations initially developed by Lucy (1977) and Gingold and Monaghan (1977) to simulate the nonaxisymmetric phenomena in astrophysics. In recent years, the SPH method has been very popular in fluid mechanics, e.g. multiphase flows,3 heat conduction,4 underwater explosions, free-surface flows, etc. In this method, each particle carries an individual mass, position, velocity, internal energy and any other physical quantity. The Lagrangian nature of SPH would lead this method to be well suited to problems with large deformations and distorted free surfaces. Simplicity, robustness and relative accuracy in comparison with other numerical methods are the main advantages of using SPH.10 Moreover, the SPH method can handle fully nonlinear, multiply-connected free-surface problems and extend computations beyond wave breaking, which need complex treatments in other grid-based methods, e.g. Volume of Fluid (VoF).In this approach the computational domain is formed by a set of particles. Each particle represents macroscopic volume of fluid conveying information about the mass, density, pressure, speed, position and the other parameters related to the nature of the flow. However, the computational cost is a disadvantage of SPH because the time step is small because of the explicit integration scheme in a weakly compressible formulation. This method has been successfully applied to a range of free-surface problems which involve breaking and splashing up There is a choice of SPH formulation in the literature mostly expressed in weakly compressible forms where pressure is obtained from the equation of state In this research, SPH is used to investigate the flow-structure interaction in free surface. First, the simulation of dam break problem on a dry and infinite bed is shown and compared with the experimental data. Then, and after implementing the governing equations, the vibration of a beam is studied. Finally, the dam break problem on an elastic gate is shown. Comparison between the SPH results and available numerical and experimental data shows that the SPH method is useful method for simulating the FSI problem.Keywords: Computational fluid Dynamics, Smoothed Particle Hydrodynamics, dam break problem, Flow-Structure Interaction.
-
Weirs, as overflow structures, are extensively used for the measurement of flow, its diversion and control in the open canals. Labyrinth weir due to more effective length than conventional weirs, allows passing more discharge in narrow canals. Determination the design criteria for the practical application of these weirs need more investigation. Weir angle and its position relative to the flow direction are the most effective parameters on the discharge coefficient. In this study, Fluent software was used as a virtual laboratory and extensive experiments were carried out to investigate the effect of geometry on the labyrinth weir discharge coefficient. The variables were the height of weir, the angle of the weir and the discharge. The discharge coefficients obtained from these experiments were then compared with the corresponding values obtained from the usual rectangular sharp crested weir experiments. Comparison of the results showed that in all cases with different vertex angle, flow discharge coefficients are in a satisfactory range for relative effective head less than 0.3. The discharge coefficient is decreased for relative effective head more than 0.3 due to the collision of water napes. It showed the higher weir, the more discharge capacity. As a result, the labyrinth weirs have a better performance in comparison with the common sharp crested.Keywords: Labyrinth weir, Discharge Coefficient, Computational fluid dynamics, Fluent
-
آبگیر تحتانی دارای شبکه آشغالگیر سازهای هیدرولیکی است که برای آبگیری در مسیر رودخانه نصب میشود. در این پژوهش هیدرولیک جریان در این سازه به صورت سهبعدی شبیه سازی و عملکرد این سازه با تغییر میزان بازشدگی شبکهی آشغالگیر مطالعه شده است. مدلسازی و تحلیل در نرم افزار Ansys CFX 16.0 انجام شد. درستی مدل عددی و نتایج بهدستآمده از تحلیل آن، با مقایسه پارامترهایی نظیر دبی خروجی آبگیر و طول خیس شده شبکه آشغالگیر با مدلها و نتایج آزمایشگاهی محققین پیشین تطابق داده شد. در ادامه با تغییر میزان بازشدگی شبکه آشغالگیر و ثابت نگهداشتن خصوصیات دیگر سهم آبگیری از بالادست رودخانه تعیین شد. بهمنظور تعمیم نتایج، آبگیر تحتانی با سه دبی ورودی متفاوت و نیز سه شیب متفاوت شبکه آشغالگیر نسبت به افق (0، 10 و 20%)، مورد تحلیل قرار گرفت. نتایج بهدستآمده نشان میدهد با افزایش دبی در یک شیب خاص سطح آبگیر، بخش کمتری از آبگیری به صورت لغزش آب روی شبکه و فروریختن آن در آبگیر است.کلید واژگان: آبگیر تحتانی، دینامیک سیالات محاسباتی، روش احجام محدود، مدل سازی سه بعدی، Tyrolean weirTyrolean weir has a hydraulic trash rack that is installed through the river stream for water-intake. In this paper, hydraulic flow of this structure is simulated three-dimensionally, and its perfor-mance is studied through a change of the amount of the opening between trash racks. The modeling and analysis is done with AN-SYS CFX 16.0. The accuracy of numerical model and the results are confirmed by comparing the parameters such as discharge of the weir output and wetted trash rack length with models and re-sults of the prior researchers. To generalize the results, Tyrolean weir is investigated in cases of three different input discharge and three different inclinations of the trash rack from the horizon (0%, 10% and 20%). The results show that increasing the inflow in a given inclination of the weir surface, less part of the water-intake is as a slip of water over the network and pouring of that in the weir. For instance, 35% opening is required to water-intake of 50% of maximum input discharge of 12 lit/ (s.m).Keywords: Bottom intake, computational fluid dynamics, finite volume method, Tyrolean weir, 3D modeling
-
جت مستغرق سه بعدی در یک بازشدگی ناگهانی، دارای هیدرودینامیک آشفته ایست. در محل بازشدگی ناگهانی، ایجاد جریان های ثانویه مجاور هسته پتانسیل جت، تولید آشفتگی نموده و ادی های تشکیل شده باعث انتقال و استهلاک انرژی و همچنین کاهش تکانه سیال در ناحیه استقرار یافته جریان می گردند. با بکارگیری مدل ریاضی آشفتگی مناسب و کارآمد، می توان پارامترهای هیدرودینامیکی جریان را در نقاط مختلف، با دقت مطلوب پیش بینی نمود. در این تحقیق، مدل ریاضی آشفتگی سه معادله ای والترز و کوکلجات (k-kl-ω) و مدل ریاضی آشفتگی هفت معادله ای تنش رینولدز، مورد بررسی قرار گرفته اند. مقایسه نتایج تحلیل دینامیک سیالات محاسباتی به روش حجم محدود در نرم افزار Ansys Fluent با نتایج آزمایشگاهی، نشان می دهد که مدل آشفتگی تنش رینولدز نتایجی با دقت بالاتر را پیش بینی می نماید. می توان به این نتیجه رسید که دلیل این دقت در تخمین، بکارگیری معادلات انتقال مجزا برای هر یک از مولفه های تانسور تنش، در شرایط طبیعی آشفتگی غیرمتجانس و غیرهمسانگرد است.کلید واژگان: جت مستغرق، مدل های ریاضی آشفتگی چند معادله ای، دینامیک سیالات محاسباتیThree-dimensional submerged jet at a sudden expansion includes chaotic hydrodynamics. At a sudden expansion, secondary flows developed adjacent to the potential core of the jet generate turbulence, and the formed eddies cause energy transfer and dissipation and decline of fluid momentum in the zone of established flow. By utilizing an efficient mathematical model of turbulence, hydrodynamic flow parameters can be predicted with a good accuracy in various locations. This paper studies the three-equation mathematical models of turbulence, namely the Walters and Cokljat (k-kl-ω), and the seven-equation Reynolds Stress mathematical model of turbulence. Comparison between the results of computational fluid dynamics using Ansys Fluent software and experimental results shows that Reynolds Stress model of turbulence predicts the results with a higher accuracy. It can be concluded that this higher accuracy is due to the use of individual transport equations for each component of the stress tensor in the normal conditions of inhomogeneous and anisotropic turbulence.
Kinetic energy, very high fluid momentum and pressure fluctuations are among characteristic of a submerged jets at a sudden expansion. How the energy is dissipated by the flow and how the secondary flow structures are generated need an extensive research. In the submerged jets, because secondary flows are developed in the vicinity of jet potential nuclear and eddies are generated in various sizes, the energy is received from the mean flow and will be being dissipated while being transferred. The dissipation process can be observed during the interaction between stress and strain fields of fluid elements (second-order tensor interaction). Formation of eddies with different sizes and decay of them into smaller structures prompt the process of turbulence diffusion. The energy-bearing eddies formed in the vicinity of the jet potential core are displaced by convection terms. After these eddies are displaced, they experience decay and reduction in size (Kolmogorov microscale) and finally disappear. Rotational dynamics around the jet potential core is of a great importance in terms of flow kinetic energy dissipation; it is why the sudden expansion ratio is a number that represents the range of rotation. Therefore, understanding the flow behavior as well as how the resulting energy is generated and dissipated requires the flow parameters to be known. In order to predict the most accurate (closest to reality) values of the hydrodynamic parameters of a submerged jet, it is necessary to utilize an efficient mathematical model. Among the proposed models of turbulence, only the multi-equation Reynolds stress mathematical model has included anisotropy. Based on what have been stated so far, it seems that the existence of discrete transport equations for each component of stress tensor for a fluid and turbulence kinetic energy dissipation as well as comparison with experimental results provide the possibility of acceptable accuracy in predicting the flow hydrodynamic parameters. In this model, the term of turbulence kinetic energy generation from the mean flow, energy dissipation term, and pressure-strain term transferring the turbulence kinetic energy toward different directions of the coordinate axes are among the very important elements of the transport equation.Keywords: Submerged jet, Multi-Equation Mathematical Models of Turbulence, computational fluid dynamics -
3D Hydrodynamics of Trapezoidal Piano key SpillwaysThis paper compares the hydraulics and 3D flow features of the ordinary rectangular and trapezoidal plan view piano key weirs (PKWs) using two phase RANS numerical simulations. The main aim is to investigate effects of the inlet key area and angle of the side walls on discharge capacity of the PKW, while keeping the developing length of the crest intact. The numerical model has been used to carry out a sensitivity analysis for geometrical parameters and hydrodynamics of the rectangular and trapezoidal weirs (TPKWs) have been compared for wide range of the water head on the weir. Results show that the trapezoidal weir has higher efficiency than the ordinary rectangular PKW. This is partly related to the inlet key flow conditions. The trapezoidal geometry increases the inlet flow area resulting in reduction of the velocity along the key axis. Consequently, flow is distributed more uniformly over the side crests. The gradual transition of the inlet key limits the development of the recirculation zones along the side walls, and it also limits the formation of the critical section along the inlet key. These phenomena result in increase of the effective weir length and thus discharge capacity increases in trapezoidal weir compared with rectangular one. Discretization of the discharge along the crest of the tested weirs clearly confirms these findings.Keywords: Piano key weir, Trapezoidal, Computational fluid dynamics, Streamline, Unit discharge
-
ارزیابی اثرات هندسه سرریز پلکانی در میزان استهلاک انرژی جریان عبوری با استفاده از سیستم استنتاج فازینشریه مهندسی عمران و محیط زیست دانشگاه تبریز، سال چهل و پنجم شماره 3 (پیاپی 80، پاییز 1394)، صص 25 -39از مشخصه های بارز در عملکرد سرریز پلکانی، قابل ملاحظه بودن استهلاک انرژی در طول آن در مقایسه با انواع سرریزهای دیگر می باشد. با توجه به این ویژگی، کوشش جهت کسب دیدگاهی دقیق تر در ارتباط با پارامتر استهلاک انرژی و نهایتا افزایش مقدار آن، محور اکثر تحقیقات مربوط به این نوع از سرریزها بوده است. در این مطالعه جهت ارزیابی تاثیر پارامتر هایی چون عمق بحرانی (yc)، تعداد پله ها (N) و شیب کف پله ها (a)، با ثابت در نظر گرفتن نسبت طول و ارتفاع کلی سرریز، از مدل نرم افزار Flow-3D به عنوان یک نرم افزار قوی در تحلیل میدان جریان، استفاده گردیده است. به منظور صحت سنجی عملکرد مدل عددی مربوطه در تخمین پارامتر استهلاک انرژی نیز یک مدل فیزیکی سرریز پلکانی در یک کانال جریان آزمایشگاهی مورد آزمایش قرار گرفته و با استفاده از سیستم پردازش تصویر، تغییرات پروفیل سطح جریان ارزیابی شده است. نتایج حاصل نشان می دهند که با افزایش مقدار دبی، میزان استهلاک انرژی کمتری حاصل می شود. تعداد پلکان و شیب معکوس روی پله ها نیز از جمله عوامل دیگری هستند که بر میزان استهلاک انرژی تاثیر می گذارند. با افزایش تعداد پلکان و شیب معکوس روی هر پله، استهلاک انرژی بیشتر می شود. به طوری که در مدل 4 پله ای و با شیب ثابت 4 درجه، تغییرات دبی از 03 /0 به 08 /0 متر مکعب بر ثانیه، باعث کاهش میزان استهلاک انرژی به اندازه 5 /1% گشته در حالی که در دبی ثابت 03 /0 متر مکعب بر ثانیه، تغییر حالت پله از شیب صفر به شیب 4 درجه موجب افزایش استهلاک انرژی به میزان 9 /0% گردیده است. نهایتا، نظر به اهمیت روز افزون محاسبات نرم در مطالعه مسائل عملی، به ارزیابی پارامتر استهلاک انرژی روی سرریز پلکانی با استفاده از سیستم استنتاج فازی پرداخته و اقدام به تهیه یک مدل سیستم استنتاج فازی بر اساس شرایط موجود شده است. مشاهده می گردد که نتایج حاصل از سیستم استنتاج فازی با مقادیر پیش بینی شده توسط مدل سازی عددی و داده های آزمایشگاهی دارای تطابق مناسبی است. ارزیابی نتایج حاصله، دلالت بر کارآئی مفهوم سیستم استنتاج فازی در محاسبه پارامتر استهلاک انرژی در سرریزهای پلکانی دارد.
کلید واژگان: سرریز پلکانی، استهلاک انرژی، سیستم استنتاج فازی، مدل فیزیکی، سیستم پردازش تصویر، نرم افزار Flow، 3D
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.