agent-based modeling
در نشریات گروه فناوری اطلاعات-
Objective
From economic, environmental and social perspectives, the sustainability of the supply chain can give a competitive advantage to organizations. By designing a hybrid discrete event agent-based simulation model based on the simulation-optimization approach and meta-heuristic algorithms, this study has sought to evaluate the sustainability of the supply chain and improve the economic, environmental and social objectives of the supply chain.
MethodFirst, by identifying supply chain agents, an agent-based simulation model is developed. After designing the hybrid simulation model, the verification and validation phases are performed. By combining the simulation model with meta-heuristic algorithms and using the simulation-optimization approach, the optimal/near-optimal values of the components affecting the sustainability of the supply chain are finally extracted.
FindingsIn addition to being able to reflect all the complexities of supply chains, the hybrid simulation optimization approach can also improve the key components affecting the sustainability of the supply chain.
ResultsImplementation of sustainable supply chain components without optimizing the key variables of the supply chain can lead to the deterioration of performance and sustainability of the supply chain. The components of the maximum levels of product and inventory maintenance and how to implement environmental and social aspects in all the elements of the supply chain have a direct effect on the chain performance and should have appropriate values in different scenarios.
Keywords: sustainable supply chain management, agent-based modeling, simulation-optimization approach -
Simulation-based techniques have become increasingly vital in engineering management, offering sophisticated tools for improving decision-making processes across a range of applications. This narrative review provides a comprehensive examination of key simulation methods, including Monte Carlo simulations, discrete-event simulations, system dynamics, and agent-based modeling, and their relevance in addressing complex engineering management challenges. The review highlights how these techniques enhance decision-making by enabling the modeling and analysis of complex systems, thereby allowing managers to predict outcomes, optimize processes, and mitigate risks. However, the implementation of these techniques is not without challenges. Technical difficulties, such as computational complexity and data accuracy, along with organizational barriers, including resistance to change and a lack of expertise, present significant obstacles. Additionally, the current research landscape reveals gaps in the practical application and scaling of these models, underscoring the need for further investigation. The review also explores emerging trends, such as AI-driven simulations and real-time decision support systems, which are set to shape the future of engineering management. Practical recommendations for engineering managers are provided, emphasizing the importance of integrating simulation tools with existing systems and fostering a culture of experimentation and iterative learning. The article concludes by discussing the broader implications of simulation-based techniques for engineering management and the critical need for ongoing research and development in this evolving field.
Keywords: Simulation-Based Techniques, Engineering Management, Decision-Making, Monte Carlo Simulations, Discrete-Event Simulation, System Dynamics, Agent-Based Modeling, AI-Driven Simulations, Organizational Challenges, Technical Challenges -
The Air Traffic Management system is a complex issue that faces factors such as Aircraft Crash Prevention, air traffic controllers pressure, unpredictable weather conditions, flight emergency situations, airplane hijacking, and the need for autonomy on the fly. agent-based software engineering is a new aspect in software engineering that can provide autonomy. agent-based systems have some properties such: cooperation of agents with each other in order to meet their goals, autonomy in function, learning and Reliability that can be used for air traffic management systems. In this paper, we first study the agent-based software engineering and its methodologies, and then design a agent-based software model for air traffic management. The proposed model has five modules .this model is designed for aircraft ,air traffic control and navigations aids factors based on the Belief-Desire-Intention (BDI) architecture. The agent-based system was designed using the agent-tool under the multi-agent system engineering (MaSE) methodology, which was eventually developed by the agent-ATC toolkit. In this model, we consider agents for special occasions such as emergency flights’ and hijacking airplanes in airport air traffic management areas which is why the accuracy of the work increased. It also made the flight’s sequence arrangement in take-off and landing faster, which indicates a relative improvement in the parameters of the air traffic management
Keywords: Agent-Based Software Engineering, Agent Based Modeling, BDI Architecture, Enterprise-oriented Software Engineering, MaSE Methodology -
People may change their opinions as a consequence of interacting with others. In the literature, this phenomenon is expressed as opinion formation and has a wide range of applications, including predicting social movements, predicting political voting results, and marketing. The interactions could be face-to-face or via online social networks. The social opinion phases are categorized into consensus, majority, and non-majority. In this research, we study phase transitions due to interactions between connected people with various noise levels using agent-based modeling and a computational social science approach. Two essential factors affect opinion formations: the opinion formation model and the network topology. We assumed the social impact model of opinion formation, a discrete binary opinion model, appropriate for both face-toface and online interactions for opinion formation. For the network topology, scale-free networks have been widely used in many studies to model real social networks, while recent studies have revealed that most social networks fit log-normal distributions, which we considered in this study. Therefore, the main contribution of this study is to consider the log-normal distribution network topology in phase transitions in the social impact model of opinion formation. The results reveal that two parameters affect the phase transition: noise level and segregation. A non-majority phase happens in equilibrium in high enough noise level, regardless of the network topology, and a majority phase happens in equilibrium in lower noise levels. However, the segregation, which depends on the network topology, affects opinion groups‟ population. A comparison with the scale-free network topology shows that in the scale-free network, which have a more segregated topology, resistance of segregated opinion groups against opinion change causes a slightly different phase transition at low noise levels. EI (External-Internal) index has been used to measure segregations, which is based on the difference between between-group (External) links and within-group (Internal) links.
Keywords: Social Network, Segregation, Opinion Formation, Opinion Dynamics, Agent-Based Modeling -
Knowing the current public opinion and predicting its trend using opinion formation models is very applicable. The social impact model of opinion formation is a discrete binary opinion model. It describes how interactions among individuals and sharing their opinions about a specific topic in a social network affect the dynamics of their opinions and form the opinion of society. The society could be an online social network. In this research, we considered the effect of segregation on opinion formation. Segregation is a phenomenon that happens due to homophily and is measured based upon network topology. Homophily is the tendency of individuals to interact with others who share similar traits. We used scale-free networks to model interactions between individuals. The social impact model includes a noise parameter, which is the stochastic part of the model, dealing with the inexplicable behavior of individuals and the effects of other influentials, e.g., mass media. Since this noise is a white noise with no bias toward any possible opinion, for simplicity, we assumed a noise-free social impact model, which is valid in equilibrium analysis we considered. The results reveal that with the same attributes for the individuals, the more segregated opinion group dominates the less segregated opinion group on average. Therefore, with the same population size and individual characteristics of both opinion groups, segregation is an overall influential factor for opinion formation. A more segregated opinion group attracts some individuals from the other group and becomes the majority opinion group of society in equilibrium.Keywords: Opinion Formation, Opinion Dynamics, social network, Social Impact Model, Agent-Based Modeling, Segregation
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.