agent based modeling
در نشریات گروه فنی و مهندسی-
Blockchain is a technology that can be used in various organizations. Blockchain, through a decentralized computer network, leads to the facilitation of high-level transactions of organizations as well as their registration, in order to better respond to people's needs. In this research, a preliminary conceptual model consisting of the behavioral factors of blockchain technology acceptance in the banking industry, which is derived from theoretical literature and research background, is presented. Behavioral factors include facilitating conditions, attitude, literacy and skill, perceived risk, technology, perceived behavioral control, external motivation, internal motivation, competition and mental norm. Then, in order to check the fit of the model, structural equation modeling and smart pls software were used using a researcher-made questionnaire extracted from the research model. For this purpose, due to the unlimited size of the statistical population, 384 samples were randomly selected and the questionnaire was distributed among them. The result indicates that all the relationships are significant and the factors cause more than 80% of changes in technology adoption. In addition, agent-based modeling and Anylogic software have been used in order to predict changes in the adoption of blockchain technology over time, affected by the identified behavioral factors. The results showed that with the improvement of behavioral factors, the adoption of blockchain technology increases over time. In this study, insight is generated for key decision makers and relevant policy makers to propagate the adoption of blockchain technology in the banking industry.Keywords: Blockchain, Behavioral Factors, Technology Acceptance, Structural Equation Modeling, Agent-Based Modeling
-
Journal of Optimization in Industrial Engineering, Volume:18 Issue: 1, Winter and Spring 2025, PP 211 -221
Electricity is one of the most significant energy sources in the modern world. Over the last century, there has been no significant change in the centrally controlled structure of electrical power grids, especially in developing countries. Global population and economic expansion, together with air pollution, put further strain on the electricity industry. The power electrical grid, as the main structure for power transmission, has to reconsider its concepts. Currently, critical peak load caused by residential customers has attracted utilities to pay more attention to residential demand response (RDR) programs. With the rise in household computing power and the increasing number of smart appliances, more and more residents can participate in demand response (DR) management through the home energy management system (HEMS) to prioritize the start-up of electrical appliances according to the necessity of use and efficiency. This research is an applied case study designed for cold regions with an average household population of three people. It is suggested that, in addition to, time of consumption and household type, the cluster of appliances affects the price of consumption, and the cost paid by users varies depending on the cluster of appliances used by different households at different times. To evaluate the potential for changing prices to better consumption criteria, a multi-agent hierarchical model including utility and different types of households and appliances is presented in this study that takes into consideration two main objectives, including peak smoothing and energy consumption reduction. Based on the specified indicators, the analytical results of two scenarios were analyzed, and it was concluded that variable pricing of appliance consumption can reduce electricity consumption and smooth the peak load curve.
Keywords: Agent-Based Modeling, Simulation, Demand Response, Electricity Consumption, Electricity Demand Profiles -
Journal of Industrial Engineering and Management Studies, Volume:11 Issue: 1, Winter-Spring 2024, PP 156 -169The new challenge for business managers is to model and simulate an efficient and effective perishable foods supply chain network that is resilient enough to deal with different disruptions. Therefore, this research aims to model a resilient supply chain for unnecessary perishable foods using an agent-based simulation to deal with future disruptions. To confirm the strategies and model, the statistical population and sample include 7 prominent university professors and 11 managers of various departments of companies producing perishable foods (sales department; production department; planning and warehouse department; laboratory and quality control department; and commercial department). NetLogo software has been utilized to test the agent-based model. The simulation environment in this study includes the behavior and interactions between the members of the supply chain of unnecessary perishable foods and the consumers in Shiraz City. The simulation results indicate that the use of strategies such as consumer behavior tracking, discount, awareness of product safety, robotics, the use of blockchain among the levels of distributors and retailers, and the activation of several supporting suppliers, leads to a resilience supply chain of unnecessary perishable foods under different disruptions. In addition, among the different scenarios, the 30% discount and 40% robotics have been the most effective in the resilience of the supply chain of unnecessary perishable foods under different disruptions.Keywords: Modeling, Simulation, Supply Chain Resilience, Unnecessary Perishable Foods, Agent-Based Modeling
-
در میان آلاینده های مختلف هوای شهر تهران، آلاینده ذرات معلق با قطر کمتر از 5/2 میکرون یکی از مهمترین آلاینده های هوا محسوب می شود که از طریق احتراق سوخت ایجاد شده و می تواند سبب ایجاد انواع بیماری ها و افزایش مرگ و میر افراد شود. با توجه به اهمیت موضوع تاکنون تحقیقات مختلفی در خصوص اثرات آلاینده PM2.5 انجام پذیرفته که اغلب آن ها به بررسی صرفا آماری و اپیدمیولوژیکی اثرات پرداخته اند. در این مطالعه هدف، بررسی و نمایش اثر غلظت آلاینده PM2.5 به کمک مدلسازی عامل مبنا می باشد که در اینجا اثر آلودگی بر روی یک خودرو به عنوان عامل حرکت کننده و نمایش اثرات آلودگی به صورت تغییر رنگ بر روی آن، مدنظر قرار گرفته است. به همین منظور ابتدا نقشه پراکنش آلاینده PM2.5 برای دور روز که دارای شدت آلایندگی مختلف بودند، در محیط نرم افزار ArcGIS تهیه شد. برای انجام این کار از اطلاعات مربوط به غلظت آلودگی روزهای 3 دی و 11 دی ماه سال گذشته استفاده شده و از روش درونیابی IDW برای درونیابی و تهیه نقشه پراکندگی استفاده شد. پس از آن از داده های بدست آمده غلظت آلودگی و همچنین تلفیق آن با موقعیت خیابان ها و میادین منطقه مورد مطالعه محیط حرکت عامل در نرم افزار Netlogo ساخته شده و محیط مربوطه فرخوانی شد. با تعیین مبدا و مقصد، مسیر و میزان سرعت حرکت خودرو، مدل برای دو روز 3 دی و 11 دی ماه اجرا شد. نتایج اجرای مدل نشان داد که به دلیل شدت آلودگی بالاتر در روز 11 دی، اثر غلظت آلودگی بر روی عامل بسیار بیشتر از روز 3 دی بوده است. با اجرای مدل در روز 11دی مقدار اثر آلودگی در مدت زمان کوتاهی به اعداد بالای 100 که محدوده ناسالم برای گروه های حساس است رسید که این میزان غلظت مطابق شاخص AQI سبب ایجاد مشکلات جدی تنفسی بر روی سالمندان و کودکان می شود.
کلید واژگان: GIS، مدلسازی عامل مبنا، PM2.5، درونیابی، IDWAmong the various air pollutants in Tehran, particulate matter with a diameter of less than 2.5 micron is considered one of the most important air pollutants that is created through fuel combustion and can cause various diseases and increase the mortality of people. Due to the importance of the subject, so far, various researches have been conducted on the effects of PM2.5 pollutants that most of them have only investigated statistical and epidemiological effects. In this study, the aim is to investigate and show the effect of PM2.5 pollutant concentration with the help of ABM, where the effect of pollution on a car as a moving agent and showing the effects of pollution in the form of color change on it was considered. For this purpose, PM2.5 pollutant distribution map for tow days with different pollution intensity was prepared in ArcGIS software environment. For doing this job, the information related to the concentration of pollution on the December 24, 2022 and January 1, 2023 was used and the IDW interpolation method was used to interpolate and prepare the dispersion map. After that, from the obtained data, the concentration of pollution and its integration with the location of the streets and squares of the studied area, the agent's movement environment was created in Netlogo software and the relevant environment was called. By determining the origin and destination, the route and the speed of the car, the model was implemented for two days, December 24, 2022 and January 1, 2023. The results of the model implementation showed that due to the higher intensity of pollution on the Januay 1, the effect of pollution on the agent was much higher than on the December 24. With the implementation of the model on the January 1, the amount of pollution in a short period of time reached above 100, which is an unhealthy range for sensitive groups. According to the AQI index, this level of concentration causes serious breathing problems for the elderly and children.
Keywords: GIS, Agent-Based Modeling, PM2.5, Interpolation, IDW -
Complexity is seen as a major challenge in supply chain research because of interactions, interdependencies, and uncertainties. The main purpose of this study is to develop agent-based models and simulations that focus on Steel Supply Chain Resilience (SSCR) based on complex adaptive network analysis and graph theory. Before and after the simulation, and by mapping the Iranian SSC to the network in the Gephi environment (0.9.2), we used graph theory to analyze node-level and network-level indices. This hypothesis was tested that the corresponding network of the target SSC contained a Complex Adaptive System (CAS). Agent Based Modeling (ABM) has been proposed as a way to track Iran's steel industry supply chain behavior during the crisis using NetLogo (6.2.0). BehaviorSpace, as NetLogo's integrated software tool, was selected for the proposed parameter sweep, design, and experiment execution of agent-based modeling. For sensitivity analysis, the output files were taken from two types of spreadsheets and six scenarios in the table for XLSTAT statistical analysis.
Keywords: Agent-Based Modeling, Complex Adaptive System, Network Analysis, Resilience, Steel Supply Chain -
International Journal of Research in Industrial Engineering, Volume:13 Issue: 1, Winter 2024, PP 71 -87
Adopting an integrated production, maintenance, and quality policy in production systems is of great importance due to their interconnected influence. Consequently, investigating these aspects in isolation may yield an infeasible solution. This paper aims to address the joint optimal policy of production, maintenance, and quality in a two-machine-single-product production system with an intermediate buffer and final product storage. The production machines have degradation levels from as-good-as-new to the breakdown state. The failures increase the production machine's degradation level, and maintenance activities change the status to the initial state. Also, the quality of the final product depends on the level of degradation of the machines and the correlation between the degradation level of the production machines and the product's quality in the case that high degradation of the previous production machines leads to a high probability to produce wastage by the following machines is considered. The production system studied in this research has been modeled using the agent-based simulation, and the Reinforcement Learning (RL) algorithm has obtained the optimal integrated policy. The goal is to find an integrated optimal policy that minimizes production costs, maintenance costs, inventory costs, lost orders, breakdown of production machines, and low-quality production. The meta-heuristic technique evaluates the joint policy obtained by the decision-maker agent. The results show that the acquired joint policy by the RL algorithm offers acceptable performance and can be applied to the autonomous real-time decision-making process in manufacturing systems.
Keywords: Agent-based modeling, Reinforcement Learning, simulation-optimization, Production Planning, maintenance, Quality Control -
Journal of Industrial Engineering and Management Studies, Volume:10 Issue: 2, Summer-Autumn 2023, PP 149 -160The primary goal of this study is to design an agent-based model of the supply chain for perishable goods during the occurrence of specific disruptions. This study is practical in terms of aim and qualitative in terms of data collection method. To validate the model, the views of the statistical population including prominent university professors and manufacturers of perishable goods and experts with experience and expertise in the area of specific disruptions of the perishable goods supply chain were used. Additionally, the snowball method was used to select the sample. In total, the views of 18 experts were used. Agent-based modeling was done using NetLogo software. In this modeling, all supply chain disruptions of perishable goods such as disruptions at the macro level (change in consumer behavior), demand, production, supply, transportation, information, and Financial were considered. Also, according to each disruption, strategies to mitigate the effects such as blockchain, robotics, etc. were determined. The results of agent-based modeling show that the simultaneous use of different strategies in the perishable goods supply chain during the occurrence of specific disruptions significantly reduces the effects of specific disruptions on the perishable goods supply chain. Vaccination along with the application of other strategies such as the use of blockchain, robotics, discounts, subsidy, online purchase methods, non-cash payment methods, awareness of product safety, green packaging, and employee safety and health have significantly reduced the effects of specific disruptions on the perishable non-necessary goods supply chain. In addition, according to the findings of the research, among the various strategies, the discount has played the most significant role in reducing the influences of specific disruptions on the supply chain of non-necessary perishable goods.Keywords: Agent-Based Modeling, Goods Supply Chain, Perishable Goods, Specific Disruptions, COVID-19 Pandemic
-
Objective
From economic, environmental and social perspectives, the sustainability of the supply chain can give a competitive advantage to organizations. By designing a hybrid discrete event agent-based simulation model based on the simulation-optimization approach and meta-heuristic algorithms, this study has sought to evaluate the sustainability of the supply chain and improve the economic, environmental and social objectives of the supply chain.
MethodFirst, by identifying supply chain agents, an agent-based simulation model is developed. After designing the hybrid simulation model, the verification and validation phases are performed. By combining the simulation model with meta-heuristic algorithms and using the simulation-optimization approach, the optimal/near-optimal values of the components affecting the sustainability of the supply chain are finally extracted.
FindingsIn addition to being able to reflect all the complexities of supply chains, the hybrid simulation optimization approach can also improve the key components affecting the sustainability of the supply chain.
ResultsImplementation of sustainable supply chain components without optimizing the key variables of the supply chain can lead to the deterioration of performance and sustainability of the supply chain. The components of the maximum levels of product and inventory maintenance and how to implement environmental and social aspects in all the elements of the supply chain have a direct effect on the chain performance and should have appropriate values in different scenarios.
Keywords: sustainable supply chain management, agent-based modeling, simulation-optimization approach -
در این تحقیق چارچوب جدیدی از مدل سازی هیدرولوژی- اجتماعی به منظور ارزیابی عملکرد سیستم های انسانی- آبی توسعه داده شده است. بدین منظور ابتدا یک مدل جامع هیدرولوژیکی با تلفیق مدل های SWAT و MODFLOW برای شبیه سازی منابع آب سطحی و زیرزمینی توسعه داده شده است. در ادامه با استفاده از تیوری ارزش- عقیده- هنجار (Value-Belief-Norm Theory) عوامل موثر در رفتار مصرف آبی کشاورزان شناسایی شده و در نهایت با ترکیب مدل SWAT-MODFLOW و مدل عامل بنیان (Agent-Based Model) مبتنی بر تیوری VBN، الگوی رفتاری کشاورزان در انتخاب نوع کشت و شیوه آبیاری ارزیابی شده است. چارچوب نظری تیوری VBN و قوانین رفتاری عوامل در ABM بر اساس داده های جمع آوری شده از پرسشنامه های میدانی کشاورزان دشت مهاباد طراحی شده است. در ادامه، با استفاده از داده های تغییر اقلیم گزارش ششم IPCC و مدلACCESS-CM2 پاسخ مدل هیدرولوژی اجتماعی توسعه داده شده در افق برنامه ریزی تحلیل و بررسی شد. نتایج بیانگر این هستند که آن دسته از کشاورزانی که زیر خط فقر هستند با انتخاب محصولات پرسود برای زراعت، سعی در بهبود بخشیدن به وضعیت نامطلوب اقتصادی خود دارند. لذا بدون ایجاد تغییر اساسی در سیاست های مدیریتی در آینده، تغییر اقلیم باعث کاهش سود بخش کشاورزی شده و الگوی کشت به سمت محصولات با سود بالا و در عین حال پر آب بر تغییر خواهد یافت. در صورت ثابت ماندن سیاست های مدیریتی در آینده، عملکرد محصولات، در آمد کشاورزان منطقه و در عین حال جریان ورودی به دریاچه ارومیه از رودخانه مهاباد کاهش چشمگیری خواهد یافت. از این رو تغییر سیاست های مدیریتی به عنوان راهکارهای مقابله با اثرات تغییر اقلیم توصیه می شود. بطورکلی، نتایج تحقیق حاضر را می توان برای برنامه ریزی و سیاست گذاری های آینده مد نظر قرار داد و تخمین زد که چگونه ایجاد تغییرات در عوامل اقتصادی و روانی برای کشاورزان بر احیای دریاچه ارومیه اثر می گذارد.
کلید واژگان: هیدرولوژی اجتماعی، مدل سازی عامل بنیان، تئوری ارزش- عقیده- هنجار، تغییر اقلیمIn this research, a new framework of socio-hydrological modeling framework has been developed in order to evaluate the performance of human-water systems. For this purpose, a comprehensive hydrological model has been developed by combining SWAT and MODFLOW models to simulate surface and underground water resources. Then by using Value-Belief-Norm Theory, the effective factors in the water consumption behavior of farmers are identified. Finally, by combining the SWAT-MODFLOW model and the Agent-Based Model based on the theory of VBN, the behavioral pattern of farmers in choosing the type of cultivation and irrigation method has been evaluated. The theoretical framework of the VBN theory and the behavioral rules of agents in ABM are designed based on the data collected from Mahabad plain farmers through field questionnaires. Afterward, an analysis and investigation were conducted on the response of the socio-hydrology model that was developed, utilizing climate change data from the 6th IPCC report and the ACCESS-CM2 model, for the planning horizon. The results showed that those farmers who are below the poverty threshold try to improve their unfavorable economic situation by choosing profitable crops for farming. Therefore, if no fundamental change is made in management policies in the future, the climate change will reduce the profit within the agricultural sector and the pattern of cultivation will change towards crops with high profits and yet high water consumptions. If the management methods remain unchanged in the future, the yield of the crops, the income of the farmers in the region, and at the same time the inflow to Lake Urmia from the Mahabad River will decrease significantly. Therefore, it is recommended to adjust the management policies as a way to deal with the effects of the climate change. In general, the results of the present research can be considered for future planning and policies and for estimating how changes in economic and psychological factors for farmers affect the restoration of Lake Urmia.
Keywords: Socio-hydrology, Agent-based modeling, Value-Belief-Norm Theory, climate change -
Simulation-based techniques have become increasingly vital in engineering management, offering sophisticated tools for improving decision-making processes across a range of applications. This narrative review provides a comprehensive examination of key simulation methods, including Monte Carlo simulations, discrete-event simulations, system dynamics, and agent-based modeling, and their relevance in addressing complex engineering management challenges. The review highlights how these techniques enhance decision-making by enabling the modeling and analysis of complex systems, thereby allowing managers to predict outcomes, optimize processes, and mitigate risks. However, the implementation of these techniques is not without challenges. Technical difficulties, such as computational complexity and data accuracy, along with organizational barriers, including resistance to change and a lack of expertise, present significant obstacles. Additionally, the current research landscape reveals gaps in the practical application and scaling of these models, underscoring the need for further investigation. The review also explores emerging trends, such as AI-driven simulations and real-time decision support systems, which are set to shape the future of engineering management. Practical recommendations for engineering managers are provided, emphasizing the importance of integrating simulation tools with existing systems and fostering a culture of experimentation and iterative learning. The article concludes by discussing the broader implications of simulation-based techniques for engineering management and the critical need for ongoing research and development in this evolving field.
Keywords: Simulation-Based Techniques, Engineering Management, Decision-Making, Monte Carlo Simulations, Discrete-Event Simulation, System Dynamics, Agent-Based Modeling, AI-Driven Simulations, Organizational Challenges, Technical Challenges -
Agent-based modeling is helpful in simulating reality to predict the unknowns. Evacuation simulation can be effective in preventing undesirable events on actual occasions. This study aims to simulate classroom evacuation with different furnishings in two different conditions: open and closed doors. This model is developed with AnyLogic software. According to the results, the best furnishing in the classroom between a central pathway, central and sides pathways, and separated chairs are related to the second furnishing. In first furnishing, the brief delay makes people bet to master the conditions. While in other furnishings, the results show the opposite. However, it should be noted that an increase in delay time leads to an increase in reaction time.
Keywords: Evacuation, Agent-Based Modeling, Simulation, Classroom, Furnishing -
Because of the dissemination of Impulse Buying (IB) behavior in consumers its academic studies have increased over the last decade. Because in large stores, sales have to be increased, the behavior of consumers in IB to be taken into account by the researchers and managers of the stores. The purpose of this paper is to model agent-based the IB behavior of consumers (customers), with regards to the factors of discount and swarm in the purchase. In terms of executive purpose and with Agent-Based Modeling (ABM) approach, the present paper examines the existing reality of consumer IB behavior. This paper develops consumption models, examines and analyzes Consumer Behavior (CB) under the NetLogo software environment. In comparing the optimal points of discounts and sales volume in both discount and swarm-discount functions that lead the stores to maximize profits and sales volume simultaneously, it can be debated that with running this model (swarm-discount) stores would be gaining more sales by less discounts. Results could describe customer behavior by implementing discount and swarm factors. Understanding the customer behavior prepared the comparing possibility of customer behavior in store in each introduced mathematical model. The contributions could be considered in two points of view. On the applicable view, this research can provide the managers and decision makers with significant information, includes possibility of forecasting sales volume and incomes of any policies in stores, so the comparing of policies and strategies analysis would be possible. This method is rather less expensive, because of virtual environment nature. Users of this model can study other sections by changing the research assumptions.
Keywords: Agent-based modeling, Consumer Behavior, Discount, Impulse buying, Swarm -
برداشت بیش از حد آب از سفره های زیرزمینی در نواحی خشک و نیمه خشک تهدید جدی برای منابع طبیعی و محیط زیست به شمار می آید. دشت ممنوعه بحرانی دامغان در سال های اخیر با افت سطح تراز آب زیرزمینی مواجه بوده است. در این مطالعه، برای شبیه سازی رفتار ذینفعان موثر در منطقه، از مدل عامل بنیان استفاده شده است. در ابتدا مدل عامل بنیان با توجه به ذینفعان کلیدی منطقه (کشاورزان مهم ترین مصرف کننده آب زیرزمینی در منطقه، شرکت آب منطقه ای و جهاد کشاورزی)، مشخصات، رفتار، خصوصیات محیط و نحوه تعامل بین عامل ها و محیط (آبخوان دامغان) درنظر گرفته شده است. اطلاعات مربوط به چاه های بهره برداری و مشخصات کشت غالب منطقه مربوط به سال 1397 می باشد. به منظور شناسایی رفتار و خصوصیات عامل ها، بازدید از منطقه و مصاحبه با کارشناسان و کشاورزان صورت پذیرفته است. مشخصه ها، رفتارها و تعاملات عامل ها با قوانین اگر-آنگاه یا عملگرهای منطقی بیان و یا با معادلاتی فرمول بندی شده است. سپس، سناریو های مدیریتی در منطقه مورد مطالعه، به مدت 10 سال مورد بررسی قرار گرفته است. نتایج حاکی از آن است که اجرای همزمان چهار طرح نصب کنتورهای هوشمند، تعدیل پروانه چاه ها، ترویج سیستم های نوین آبیاری و ایجاد شرکت های تعاونی تولید ضمن حفظ درآمد خالص کشاورزان منجر به کاهش برداشت آب به میزان 44 درصد نسبت به سناریوی پایه می شود. همچنین، در اثر اجرای این 4 طرح، روش آبیاری 4000 هکتار از اراضی کشاورزی به آبیاری های تحت فشار تغییر می یابد.
کلید واژگان: مدلسازی عاملبنیان، شبیه سازی رفتاری، ذینفعان، برداشت منابع آب زیرزمینی، دشت دامغانExcessive water extraction from aquifers in arid and semi-arid areas poses a serious threat to natural resources and the environment. Damghan's critical forbidden plain has faced a drop in groundwater level in recent years. In this study, the agent-based model has been used to simulate the behavior of effective stakeholders in the region. First, the agent-based model is considered based on the key stakeholders of the region (farmers are the most important consumers of groundwater in the region, Regional Water Company and Agriculture- Jahad), characteristics, behavior, characteristics of the environment, how the interaction between the agents and the environment (Damghan aquifer). Information about exploitation wells and characteristics of the dominant cultivation in the region is related to 1397. To identify the behavior and characteristics of the agents, a visit to the area and interviews with experts and farmers have been done. The characteristics, behaviors, and interactions of agents are expressed by if-then rules or logical operators or by formulated equations. Then, management scenarios in the study area have been studied for 10 years. The results show that the simultaneous implementation of four projects of installing smart meters, modifying well licenses, promoting new irrigation systems, and establishing production cooperatives while maintaining farmers' net incomes will reduce water withdrawal 44% compared to the base scenario. Also, as a result of the implementation of these four projects, the irrigation method of 4000 hectares of agricultural lands will be changed to pressurized irrigation.
Keywords: Agent-based modeling, Behavioral Simulation, Stakeholders, Groundwater Resources Extraction, Damghan Plain, Iran -
The Air Traffic Management system is a complex issue that faces factors such as Aircraft Crash Prevention, air traffic controllers pressure, unpredictable weather conditions, flight emergency situations, airplane hijacking, and the need for autonomy on the fly. agent-based software engineering is a new aspect in software engineering that can provide autonomy. agent-based systems have some properties such: cooperation of agents with each other in order to meet their goals, autonomy in function, learning and Reliability that can be used for air traffic management systems. In this paper, we first study the agent-based software engineering and its methodologies, and then design a agent-based software model for air traffic management. The proposed model has five modules .this model is designed for aircraft ,air traffic control and navigations aids factors based on the Belief-Desire-Intention (BDI) architecture. The agent-based system was designed using the agent-tool under the multi-agent system engineering (MaSE) methodology, which was eventually developed by the agent-ATC toolkit. In this model, we consider agents for special occasions such as emergency flights’ and hijacking airplanes in airport air traffic management areas which is why the accuracy of the work increased. It also made the flight’s sequence arrangement in take-off and landing faster, which indicates a relative improvement in the parameters of the air traffic management
Keywords: Agent-Based Software Engineering, Agent Based Modeling, BDI Architecture, Enterprise-oriented Software Engineering, MaSE Methodology -
مشکلات متعدد حمل و نقل شهری نظیر آلودگی و تراکم ترافیک، تصمیم گیران را بر آن داشته تا شهروندان را ترغیب به استفاده هرچه بیشتر از وسایل حمل و نقل عمومی نمایند. یکی از مشکلات در این زمینه، در دسترس نبودن یک سامانه جامع از تمامی وسایل حمل و نقل عمومی می باشد. مدلسازی عامل-مبنا یکی از روش های مطرح در مدل سازی پدیده های پویا نظیر ترافیک شهری است. با کمک این مدل می توان سفر درون شهری با استفاده از وسایل حمل و نقل عمومی را در قالب عامل ها شبیه سازی نمود و انتخاب بهینه در سفر بین دو نقطه را یافت. از این رو در این تحقیق یک مسیریابی چندساختی عامل-مبنا مشتمل بر تاکسی، اتوبوس و آژانس برای سفر درون شهری طراحی و در مدل شهری و حمل و نقل عمومی شهر قزوین پیاده سازی شد. عامل ها در مدل در نقش مسافرانی ظاهر می شوند که امکان برگزیدن هر یک از وسایل حمل و نقل ممکن را برای گذر از مبدا تا مقصد دارند و خلاهای مسیر خود را نیز با پیاده روی پر می کنند. معیارهای اصلی برگزیدن مسیر، زمان و هزینه طی طریق است. برای بررسی نتایج مدل، داده های میدانی جمع آوری شد. نتایج نشان داد که اولویت هر یک از گزینه های سفر برابر 4/0 ، 27/0 ، 19/0 و 14/. به ترتیب مربوط به تاکسی اینترنتی، آژانس، اتوبوس و تاکسی می باشد. بررسی ها آشکار ساخت که تصمیم های افراد تا حدودی با خروجی مدل عامل-مبنا که در واقع بیانگر انتخاب های بهینه است، متفاوت می باشد. به نظر می رسد دلیل این امر تصمیم گیری پیچیده انسانی باشد که عوامل متعددی از جمله ریسک پذیری و ویژگی های شخصیتی و عادت و سایر عوامل ریز و درشت دیگر در آن نقش دارند. با این وجود، رواج یافتن چنین سامانه هایی در سطح عمومی نه تنها می تواند افراد را به استفاده بیشتر از حمل و نقل عمومی ترغیب نماید، بلکه موجب کاهش زمان و هزینه های سفر نیز خواهد شد.کلید واژگان: سفر درون شهری، شبکه حمل و نقل چند ساختی، مدلسازی عامل-مبنا، مسیریابیThe increasing importance of transportation in urban spaces, as well as the numerous problems it has created, have prompted decision-makers to encourage citizens to use public transportation as much as possible. Therefore, scientists and urban decision-makers are looking for a comprehensive system for more connections between transportation systems. On the other hand, the use of public transportation is very important and will create spatial justice, will bring proper access for all people. In this paper, a factor-based multiprocessor routing including taxis, buses and agencies was designed. Agents appear in the role of travelers who have the opportunity to choose any possible means of transportation to cross from origin to destination and also fill the gaps in their path by walking. The main criteria are choosing the path of time and cost along the way. Field data were collected to evaluate the results of the model. The results of analyzing the field data by multicriteria methods revealed that the priorities of people’s travelling mode are internet taxi, agency (called by telephone), bus and taxi (with predetermined rout and taking more than one passenger) with values of 0.4, 0.27, 0.19 and 0.14 respectively. The observations differed somewhat from the model output, which in fact represents optimal choices. This seems to be due to complex human decision-making in which many factors, including risk-taking and personality traits and habits and other factors, play a role.Keywords: Multi-modal transportation System, Agent-based modeling, Path finding, Intra-city travel
-
Spatial analysis and distribution are of great importance to transportation planners, especially in traffic demand management. Simulation is an important tool in the planning and management of transportation systems to achieve an estimation of real system behavior to evaluate different scenarios. Regarding the aggregate nature and inability to consider heterogeneity among the individuals in a large number of discrete choice models and the high cost of data collection through questionnaires, using a disaggregate and heterogeneous agent approach can be used to evaluate different policies. Since each agent is inherently autonomous and interacts with different agents and the environment to achieve its goals, this paper aims to use the agent-based approach to simulate the destination choice of discretionary tours of Qazvin citizens. Individual socioeconomic characteristics and travel information questionnaires (revealed preference) of 9938 households and 29840 individuals in 12 municipality districts of Qazvin were collected. After extracting 12 types of activity patterns including shopping and recreation trips, the simulation of destination choice in MATLAB has been studied using the Reinforcement Learning algorithm (RL) and reward-punishment functions which are based on the relative attractiveness of districts for various modes and travel times. High correlation (above 0.9) results were achieved among simulated trip destination choice distributions and observed survey data using the RL algorithm which illustrates the algorithm's goodness of fit; also the simulation results and survey data have a similar trend among districts which illustrates that the simulation findings have real-world implications.Keywords: Agent-Based Modeling, Reinforcement Learning Algorithm, Destination Choice, Discretionary Tours
-
Journal of Industrial Engineering and Management Studies, Volume:8 Issue: 2, Summer-Autumn 2021, PP 175 -195During the last decade, many researchers have been attracted to study the role of uncertainties in their supply chain designs. Two important uncertainties of a supply chain are demand uncertainty and supply disruption. The basic concept of the proposed model of this paper is based on the newsvendor problem. The model consists of many retailers and many suppliers as two types of autonomous agents that interact with each other considering demand and supply uncertainties. To cope with the uncertainties, retailers have three choices: a forward contract, an option contract, and purchasing from the spot market. Retailers maybe risk sensitive or risk neutral. A new simulation optimization approach is developed to find the best behavior of a risk sensitive retailer in contrast with the other risk neutral retailers during the multiple contract periods. In this model two objectives are defined to find the best behavior of the risk sensitive retailer: the maximization of the profit and the service level. In order to optimize the agent based simulation, an NSGA-II approach is used. The proposed simulation based NSGA-II is further developed in two directions: the one is different realization numbers of the uncertain parameters, and the other is preference points. Under the different preference points and different number of realizations, Pareto optimal solutions are discovered by the collaboration of the agents. Results of the numerical studies showed that adopting more risk averse policies during the contract periods will result in a larger service level and smaller profit rather than adopting more risk taking policies.Keywords: stochastic supply chain, Newsvendor problem, Agent Based Modeling, Simulation Optimization, NSGA-II
-
Journal of Industrial Engineering and Management Studies, Volume:8 Issue: 2, Summer-Autumn 2021, PP 54 -92In recent decades, researchers are turning to the potential of ABMs to study complex phenomena. Due to intrinsic interconnections, structural interactions and inter-dependencies, individual variations, and communications of various components, supply chain network should be accordingly treated as a complex adaptive system. ABM is dominant tool exploring the emergent behavior of supply chain network with numerous interactive agents. This paper aims to conduct a systematic literature review on the agent-based modeling in the concepts of supply chain and various fields of research. Using reputable databases, combining intended keywords and applying filters based on restrictions and indicators, a total of 123 relevant articles are selected from the valid journals and conferences in year 2010-2019, and 17 subjects in association with supply chain management and 23 subjects related to other fields are presented. Moreover, a brief history and the definition of the three basic areas including complex systems, complex adaptive system and agent-based modeling are provided. The main objective is to provide a perspective based on agent-based modeling and complex adaptive systems for researchers in different sciences and especially supply chain researchers, who are not sufficiently familiar with the philosophy and applications of these approaches.Keywords: Agent Based Modeling, complex adaptive system, Supply chain network, Systematic literature review
-
یکی از مزایای روش سنجش از دور به کمینه رساندن بررسی های سطحی، به ویژه در مناطق غیر قابل دسترسی بر اساس اطلاعات طیفی به دست آمده از تصاویر ماهواره ای می باشد. وجود مواد معدنی توسط امضای طیفی ثبت شده شان در تصاویر ماهواره ای قابل ردیابی هستند. فرضیه اصلی این تحقیق آن است که تلفیق چنین پردازش هایی همراه با مدل سازی عامل مبنا (Agent-based Modeling) می تواند به برنامه ریزی بهتر کاوش منطقه و کاهش هزینه و زمان بیانجامد. در این مطالعه از اطلاعات سنجنده ASTER و سنجنده OLI برای شناسایی مناطق حاوی مواد معدنی در بخش یانه سر شهرستان بهشهر استفاده شده است. با توجه به اینکه ترکیب کانی شناسی و سنگ شناختی منطقه مورد مطالعه اساسا از آهک، شیل، رس و مارن است، حاصل پردازش، بارزسازی واحدهای آهکی می باشد که پس از انجام پیش پردازش ها بر روی اطلاعات و تصاویر سنجنده، از روش های نسبت باندی برای مشخص کردن مناطق دارای پتانسیل کانی آهک استفاده شد. سپس از روش نگاشت زاویه طیفی (Spectral Angle Mapper) برای تفکیک دقیق تر این مناطق با استفاده از کتابخانه طیفی آزمایشگاهی USGS بهره برده شد. در ادامه جهت بهینه سازی زمان و هزینه در جهت شناسایی مناطق حاوی کانی آهک از مدل سازی عامل مبنا به عنوان رویکردی نوین استفاده گردید. با در نظر گرفتن چندین استراتژی بر اساس حرکت تصادفی و حرکت در نواحی پتانسیل معدنی، جداول زمانی و هزینه به دست آمده و با هم مقایسه گردید و در نهایت بهترین نتایج از نظر زمان، هزینه و تعداد عوامل جستجو گر به دست آمد.
کلید واژگان: مواد معدنی، سنجش از دور، مدل سازی عامل مبنا، Netlogo، الگوریتم نگاشت زاویه طیفیOne of the advantages of the remote sensing method is that it minimizes surface surveys, especially in inaccessible areas based on spectral information obtained from satellite images. The presence of minerals can be explored by their spectral signatures recorded in satellite images. The main hypothesis of this research is that the combination of such processes with agent-based modeling (ABM) can lead to better planning of the mining exploration and reduce cost and time. In this study, ASTER and OLI sensors were used to identify areas containing minerals in the Yanesar section of Behshahr city. Due to the combination of mineralogy and lithology, the study area is mainly made of lime, shale, clay, and marl. The result of the processing is the exposure of lime units. After pre-processing on the information and satellite images, band ratio methods have been used to identify areas with lime mineral potential. Then, Spectral Angle Mapper (SAM) method was used to more accurately separate these areas using the USGS laboratory spectral library. In order to optimize time and cost in order to identify areas containing lime minerals, agent-based modeling has been used as a new approach. By considering several strategies based on random movement and movement in mineral potential areas, time tables and cost were obtained and compared with each other, and finally, the best results in terms of time, cost, and a number of explorer agents were obtained.
Keywords: Minerals, Remote Sensing, Agent-Based Modeling, Netlogo, Spectral Angle Mapper Algorithm -
امروزه مدل سازی عامل بنیان باتوجه به ماهیت هوشمندی و استقلال عوامل تشکیل دهنده به یک ابزار موثر برای مدل سازی و ارزیابی سیستم های پیچیده تبدیل شده است. این سیستم های پیچیده رفتارهایی از خود بروز می دهد که از رفتار اجزاء به تنهایی قابل استنتاج نیست و هربار تجربه سیستم ممکن است به نتایج متفاوتی منجر شود. در این مطالعه زنجیره تامین محصولات کشاورزی (ASC)، به عنوان نمونه ای از یک سیستم پیچیده متاثر از الگوهای رفتاری غیرقابل پیش بینی فردی عامل ها در زنجیره بررسی می شود. هدف ما مدل سازی این سیستم پیچیده و ارزیابی نقش سیاست های هماهنگی کشاورزان (حق بیمه و قیمت کشاورزان قراردادی)، نقش اثرپذیری تصمیمات عامل ها از یکدیگر و عدم قطعیت اقلیمی و بر پایداری اقتصادی زنجیره است. عوامل این مطالعه شامل کشاورزان، عمده فروشان و فروشندگان هستند که این عوامل به طور مستقل به دنبال دستیابی به اهداف فردی خود در ارتباط با سایر عوامل هستند و برای تولید، توزیع و تجارت محصولات زراعی با یکدیگر ارتباط و رقابت دارند. قیمت محصولات در یک مکانیزم رقابتی تعیین می شود. کشاورزان برای کسب منافع خود می توانند برای انتخاب محصول و عمده فروشان و کشاورزان برای بهره گیری از هماهنگی با سایر کشاورزان تصمیم گیری می کنند. در نهایت فروشندگان به دنبال تامین تقاضای خود با کمترین هزینه اند. نتایج تحلیل آماری نشان داد که با کاهش جذابیت سیاست های هماهنگی در زنجیره، کشاورزان به تدریج در نوسانات قیمتی ناشی از تاثیر عدم قطعیت های وجود در بازار، منابع مالی خود را از دست می دهند. همچنین این نتایج نشان داد که ایجاد قیمت های حمایتی و اثرات الگوهای رفتاری بر پایداری قیمت در ASC موثر است.
کلید واژگان: زنجیره تامین محصولات کشاورزی، کشاورزی قراردادی، هماهنگی کشاورزان، شبیه سازی، مدلسازی عامل بنیانJournal of Industrial Engineering Research in Production Systems, Volume:9 Issue: 18, 2021, PP 153 -177Today, due to the intelligent nature of each agent, agent-based simulation has become an effective tool for predicting many complex systems between independent agents. These complex systems exhibit behaviors that cannot be inferred from the behavior of the components alone, and each experience of the system may lead to different results.In this study, the Agricultural Supply Chain (ASC) is examined as one of these systems in which agents try to make the best decisions to maximize their benefits through learning from the environment. Agents of this study include farmers, wholesalers, and sellers who independently seek to achieve their individual goals in competing with other agents. The price of crops is determined in a competitive bidding price mechanism. Each farmer can allocate his resources to cultivate a particular crop based on his own and other neighboring farmers experience. They can also become a contract farmer with the nearest wholesaler. Wholesalers decide on a similar mechanism for their contract operation. Eventually, sellers try to meet their demand at the lowest cost. The statistical analysis results showed that as the attractiveness of conventional agriculture in the supply chain decreases, they gradually lose their financial resources and go bankrupt in price fluctuations due to the impact of uncertainties in the market and the environment. These results also showed that the creation of supportive prices and the effects of behavioral and social patterns of agents play an important role in price stability and control of fluctuations in ASC.
Keywords: Agri-Food Supply Chain, Contract Farming, Farmers coordination, Simulation, Agent-Based modeling
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.