جستجوی مقالات مرتبط با کلیدواژه « artificial neural network » در نشریات گروه « فناوری اطلاعات »
تکرار جستجوی کلیدواژه «artificial neural network» در نشریات گروه «فنی و مهندسی»-
هجوم علف های هرز از جمله عوامل محیطی به شمار می رود که ارزش و کیفیت محصول را، به طور مستقیم، از طریق رقابت با گیاه اصلی تحت تاثیر قرار می دهند. سامانه های کنترل علف های هرز که بر اساس ویژگی های ظاهری عمل می کنند می بایست توانایی تشخیص علف های هرز و محصولات تحت توزیع های مختلف را داشته باشند. در این پژوهش به منظور کاهش هزینه ها و مقرون به صرفه سازی، سمپاشی طراحی و توسعه داده شد و با الهام ازبسته کلمات تصویری، برای بهبود عملکرد روش هیستوگرام شیب های جهت گرا، استفاده متفاوتی از این توصیف گر ارایه گردید. مطابق نتایج بدست آمده از مرحله آموزش، الگوریتم بسته کلمات تصویری به خوبی با میزان دقت، اطمینان و حساسیت بیش از 97% قادر به تشخیص محصول از گونه های علف هرز رایج در مزارع چغندرقند بود.سامانه سمپاش هوشمند در حالتی که سامانه با الگوریتم توسعه یافته وارد مزرعه گردید توانست به خوبی با دقت، اطمینان و حساسیت بیش از 94% محصول را از گونه های علف هرز به صورت برخط تشخیص دهد. نتایج نشان داد سامانه سمپاش ارایه شده در بهترین و بدترین حالت سمپاشی به ترتیب 93/78% و 38/69% میزان مصرف علف کش را کاهش داده است. مطابق نتایج بدست آمده بهترین حالت سمپاش هوشمند در حالت نرخ متغیر و استفاده از الگوریتم تشخیص بسته کلمات تصویری بدست آمد.
کلید واژگان: علف هرز, شبکه عصبی مصنوعی, سمپاش, HOG, طبقه بندی, علف کش}This research highlights the potential of computer vision and machine learning algorithms to enhance weed control systems and decrease herbicide use in agriculture. The development of an efficient and cost-effective smart sprayer system has the capacity to not only benefit farmers financially, but also mitigate the environmental impact of herbicide application. Further investigation could explore the feasibility and practicality of implementing such systems on a larger scale in diverse crop fields. The recognition of weeds and crops based on their appearance characteristics is crucial for effective weed control systems, and the proposed BOVW algorithm demonstrated a high level of accuracy, reliability, and sensitivity in distinguishing between common weed species and sugar beet crops. The smart sprayer system, incorporating the BOVW algorithm, exhibited a high level of precision in identifying the product from weed species online. Notably, the provided sprayer system significantly reduced herbicide consumption by 78.93% and 69.38% in the best and worst mode of spraying, respectively. The findings suggest that the variable rate mode utilizing the BOVW detection algorithm represents the optimal mode of operation for the smart sprayer system.
Keywords: weed, Artificial Neural Network, Sprayer, HOG, Classification, Herbicide} -
In any economy, it is essential to monitor the rate of population change closely. Governments employ various strategies and programs to regulate population growth since different population growth rates have distinct economic consequences. This paper reveals a global trend of reduced desire to have children, with variations across countries. The paper aims to predict the population growth rate in England by employing Artificial Neural Networks (ANN) in combination with various meta-heuristic algorithms, including the Sparrow Search Algorithm (SSA). The selection of SSA and other algorithms is based on factors such as accuracy and computational efficiency. A set of 18 economic indicators serves as input variables, and a Genetic Algorithm (GA) is used for feature selection. The data used for analysis spans the most recent ten years and is presented on a monthly basis. The results indicate that SSA exhibits the lowest prediction errors for the population growth rate among the applied algorithms in this paper. The primary contribution of this study lies in the application of hybrid algorithms that combine SSA-ANN with other algorithms, such as LA. The paper also emphasizes the inclusion of influential and impactful indices as input variables to enhance prediction accuracy.Keywords: Artificial Neural Network, meta-heuristic algorithms, Sparrow Search Algorithm, Mayfly Algorithm, Lichtenberg Algorithm, Population growth rate}
-
Educational data mining utilizes information from academic fields to develop renewed techniques and spot unusual patterns to gauge students' academic achievement. Evaluating student learning is a complicated issue. Data mining in this field enables to predict students' performance to recommend performance in universities. Therefore, the current authors have recently seen the rapid growth of data mining and knowledge extraction as tools used by academic institutions to optimize student learning processes. Here, a method based on a certain kind of artificial neural network called Long Short Term Memory recurrent neural network for prediction will operate. The proposed approach tries to use the educational characteristics of different people to predict the best educational process future educational. It career for students and thereby take steps to improve the effectiveness of the educational system. For comparison, one of the newest algorithms presented in this field was implemented using the proposed technique. The evaluations' findings were performed in the form of two scenarios with different data sizes and different amounts of test and training data. For the evaluation, the dataset taken from an online educational system was used. The evaluation results are presented in the form of four well-known criteria precision, recall, accuracy, and F1, which demonstrate the superiority of the proposed method.Keywords: Educational Data Mining, LSTM, Artificial Neural Network, deep learning}
-
Using chaff to deflect missile guidance radar or missile seeker is a common and effective defense method in military vessels. To deal with this defensive method, focus on specific characteristics of the target and chaff signals. These features should be able to perform properly in different operating conditions of the radar or different environmental conditions that change the behavior of the radar’s return signals. But there is no feature that can distinguish the target from the target with appropriate accuracy in all conditions. In this article, a structure is presented for detecting chaff and target in a radar and has been able to improve the accuracy of target detection in presence of chaff. Also, to improve the performance of the radar with a cognitive approach, its transmitted waveform is optimally selected and changed at each stage. For this purpose, a feedback neural network with LSTM layers has been used. The general structure of the proposed method uses pre-processing on the received radar signals and extracts symmetry characteristics, Doppler spread and AGCD from it to contain the information for separating the target and chaff. Then, to remove the effect of noise on the features. Finally, these features are used to correctly distinguish the target from the chaff in a feed-forward neural network with fully connected layers. At the end, the effectiveness of this method is compared to the previous methods. It can be seen that the performance of the proposed system has made a significant improvement in accuracy of detection.
Keywords: Chaff, Target, radar, Waveform, Artificial Neural Network} -
مشاهدات بیولوژیکی بیان می دارد که فراموشی، جزء جداناپذیر از سیستم یادگیری انسان است. بنابراین فراموشی در الگوریتم های یادگیری لزوما مخرب نبوده و می تواند سازنده نیز باشد. در پیاده سازی ها، به دلیل محدودیت فضا و تعداد نورون های شبکه، تعداد محدودی الگوی آموزشی قابل آموزش بوده و الگوهای بعدی با این الگوها تداخل مخرب پیدا خواهند کرد؛ درنتیجه، الگوریتم ها، برای یادگیری درازمدت، باید نوعی مکانیزم فراموشی داشته باشند تا فضای یادگیری (ذخیره سازی) برای الگوهای آموزشی جدید ایجاد گردد. بنابراین، برای موفقیت در حوزه یادگیری ماشین، نیازمند نوعی مکانیزم فراموشی مشابه عملکرد مغز انسان هستیم. فراموشی به صورت از دست رفتن اطلاعات از حافظه ها مدل می شود و لزوم وجود این مکانیزم، در آموزش آنلاین محسوس تر است چراکه شبکه باید دایما وزن های خود را بروز کند. در این مقاله از روش یادگیری فعال که یکی از روش های پرکاربرد می باشد، بهره گرفته شده است. این روش بر مبنای پخش قطرات جوهر به ازای داده های آموزشی به مدل سازی سیستم می پردازد. در این روش، دامنه قطرات جوهر بر روی صفحات بدون تغییر مانده و هیچ گونه فراموشی صورت نمی پذیرد که مغایر با مشاهدات بیولوژیک است. در این مقاله مکانیزیم فراموشی به این الگوریتم اضافه شده و شبیه سازی ها نشان از افزایش قدرت محاسباتی مدل پیشنهادی در برخورد با مجموعه داده های متفاوت دارد.کلید واژگان: روش یادگیری فعال, اپراتور پخش قطره جوهر, سیستم استنتاج فازی, شبکه های عصبی بیولوژیکی, معیار فراموشی, مدل سازی}Biological observations, indicate that amnesia is an integral part of the human learning system. Thus, amnesia in learning algorithms is not necessarily destructive and can be constructive. In implementation, due to space constraints and the number of neurons, a limited number of training patterns can be taught to the network. Consequently, to be able to obtain long-term learning capability, it must possess a kind of forgetting mechanism to make space for new learning patterns. Thus, a type of forgetting mechanism similar to the function of the human brain is necessitated. The need for a forgetting mechanism is more acute in online training. Amnesia is modeled as the loss of information from memory. In this paper, the ALM, which is one of the most widely used methods, is employed. The selected algorithm models the system based on the distribution of ink drops based on training data. In this method, in all the implementations, the amplitude of the ink drops on the IDS planes remains unchanged, and no amnesia occurs, which is contrary to biological observations. In this work, the forgetting mechanism is added to the presented algorithm, and simulations in the modeling process are investigated.Keywords: Active Learning Method (ALM), Ink Drop Spread (IDS) Operator, Fuzzy inference system, Artificial Neural Network, Forgetting Factor, modelling}
-
Multivariate Time Series Prediction Considering Intra-Time-Series and Inter-Time-Series Dependencies
A few artificial neural networks have been proposed so far for multivariate time series prediction and they used simple general-purpose neural networks. Therefore, they cannot achieve high prediction accuracy. In this paper, we propose an artificial neural network called DBMTSP (Dependency Based Multivariate Time Series Prediction) to predict the next element of a time series in the multivariate case. Compared to the existing methods, DBMTSP considers both intra-time-series dependencies and inter-time-series dependencies efficiently to achieve more accurate predictions. We propose a hierarchical encoder in DBMTSP to discover inter-time-series dependencies. The proposed hierarchical encoder is able to encode secondary time series into a single parameter that represents dependencies that exist between the main time series and the secondary time series. The hierarchical encoder has a scalable design such that it can accept a large number of secondary time-series. We have trained DBMTSP using 32760 data matrices. We evaluated DBMTSP using 8190 test data matrices. Our evaluations show that DBMTSP surpasses the existing methods in term of prediction accuracy.
Keywords: Time Series, Multivariate, Prediction, Artificial Neural Network} -
With the emergence of the World Wide Web, Electronic Commerce (E-commerce) has been growing rapidly in the past two decades. Intelligent agents play the main role in making the negotiation between different entities automatically. Automated negotiation allows resolving opponent agents' mutual concerns to reach an agreement without the risk of losing individual profits. However, due to the unknown information about the opponent's strategies, automated negotiation is difficult. The main challenge is how to reveal the optimal information about the opponent's strategy during the negotiation process to propose the best counter-offer. In this paper, we design a buyer agent which can automatically negotiate with the opponent using artificial intelligence techniques and machine learning methods. The proposed buyer agent is designed to learn the opponent's strategies during the negotiation process using four methods "Bayesian Learning", "Kernel Density Estimation", "Multilayer Perceptron Neural Network", and "Nonlinear Regression". Experimental results show that the use of machine learning methods increases the negotiation efficiency, which is measured and evaluated by parameters such as the rate agreement (RA), average buyer utility (ABU), average seller utility (ASU), average rounds (AR). Rate agreement and average buyer utility have increased from 58% to 74% and 90% to 94%, respectively, and average rounds have decreased from 10% to 0.04%.
Keywords: Multiagent System, Automatic Negotiation, Machine Learning, Opponent Strategy Learning, Opponent's Modeling, e-commerce, Bayesian Learning, Kernel density estimation, Artificial Neural Network} -
Web Services provides a solution to web application integration. Due to the significance of trust in choosing the proper web service, a novel optimal configuration of neural networks by multi-objective genetic algorithm and ensemble-classifier approach is used to evaluate the trust of single web services. For evaluating trust in the single web services, first, a set of neural networks were trained by the settings their parameters through the multi-objective genetic algorithm. Next, the best combination of neural networks was selected to make an ensemble classifier. This method was evaluated with single WS dataset considered eight criteria. Three measurements, accuracy, time and ROC curve were considered to assess the efficiency. Ultimately, the results show that the proposed approach can achieve a trade-off between time and accuracy by the multi-objective genetic algorithm. Also using ensemble-classifiers approach increases the reliability of the model. Consequently, the proposed method promote the detection accuracy.
Keywords: web service, Trust, Artificial Neural network, Multi-Objective Genetic Algorithm, Ensemble-Classifier} -
In recent years, the use of MRI images has been very much considered due to their high clarity and high quality in the diagnosis and determination of brain tumor and its features. In this study, to improve the performance of tumor detection, we investigated comparative approach of the different classifiers to select the most appropriate classifier for identifying and extracting abnormal tissue and selected the best one by comparing their detection accuracies rate. In this research, GLCM and GLRM methods are used to extracting discriminating features. Thus results in they reduce the computational complexity. fuzzy entropy measurement method is used to determine the optimal properties and finally, we compared the four FFNN, MLP, BPNN, ANFIS neural networks to perform the decision making and classification process. The purpose of these four neural networks are to develop tools for discriminating the malignant tumors from benign ones assisting deciding in clinical diagnosis. Based on the results, we achieved high results among all classifiers. The proposed methodology results in accurate and speedy detection of tumor in brain along with identification of precise location of the tumor. In our opinion, the use of these classifiers can be very useful in the diagnosis of brain tumors in MRI images. Our other goal is to prove the suitability of the ANN method as a valuable method for statistical methods. The novelty of the paper lies in the implementation of the proposed method for discriminating the malignant tumors from benign which results in accurate and speedy detection of tumor in brain along with identification of precise location of the tumor. The efficiency of the method is proved through plenty of simulations and comparisons.Keywords: Brain tumor, MRI images, GLCM, GLRM, Artificial Neural Network}
-
درزمینه تشخیص و طبقه بندی جانوران همواره مشکلات بسیاری وجود دارد که مانع از به وجود آمدن پیشرفت های سریع و موثر در این حوزه هستند. در سال های اخیر روش های جدیدی که بر شبکه های عصبی مصنوعی و پردازش تصویر مبتنی هستند، پیشنهاد شده اند که می توانند به تشخیص و بازشناسی گونه های پروانه ها بپردازند. در این مقاله به طور خاص، تشخیص گونه های پروانه را با استفاده از پردازش تصویر و روش های طبقه بندی هوشمند بررسی خواهیم نمود و به دنبال بهبود عملکرد از طریق به کارگیری ویژگی های بافت بال پروانه ها هستیم. در این راستا از روش استخراج ویژگی کوانتیزه سازی فاز محلی استفاده شده است که در مقابل محوی موجود در تصاویر پروانه مقاومت نشان می دهد. برای طبقه بندی نیز از دو نوع شبکه عصبی MLP و موجکی استفاده گردید که در بین این دو، شبکه عصبی موجکی موفق به رسیدن به صحت 100% در طبقه بندی 14 گونه پروانه شد.کلید واژگان: بازشناسی, شبکه عصبی مصنوعی, استخراج ویژگی, کوانتیزه سازی فاز محلی و شبکه عصبی موجکی}In the field of diagnosis and classification of animals there are always many problems which prevents the development of rapid and effective progress in this area. In recent years, the new approaches have been proposed that are based on artificial neural networks and image processing that can detect and recognize the butterfly types. In this article, specifically, we'll scrutiny the butterfly species detecting by using image processing and smart classification methods, also we are looking for the performance improvement by employing texture of butterfly wings features. In this context, the quantization feature extraction method of the local phase is used that resist against the blur in the butterfly pictures. As well as, in order to classification, the MLP and wavelet neural network is used that the result demonstrates, the wavelet neural network achieve 100% classification accuracy in 14 butterfly species.Keywords: recognition, Artificial Neural Network, Feature Extraction, Quantization of the Local Phase, Wavelet Neural Network}
-
یکی از مهمترین پارامترهای قابل اندازه گیری در سیستم های مهندسی، دما است. برای اندازه گیری دما با توجه به میزان دقت مورد نیاز و شرایط فیزیکی، سنسورهای مختلفی از جمله RTD، NTC، PTC، Thermocouple و... وجود دارد. یکی از مهمترین این سنسورها NTC است، که علیرغم داشتن مزایای زیاد، اما به دلیل غیرخطی بودن کمتر از ان استفاده می شود. پدیده خودگرمایی در NTC ها یکی از مهمترین عوامل بازدارنده در استفاده از آن در کاربردهای عملی می شود. در این تحقیق ساختاری جدید مبتنی بر استفاده از شبکه های عصبی برای مدلسازی پدیده های غیرخطی و خودگرمایی در سنسور NTC پیشنهاد شده است. در ساختار پیشنهادی این تحقیق با استفاده از داده های آزمایشگاهی و واقعی، شبکه های عصبی آموزش و آزمایش می شوند. میانگین مربعات خطای 2040/0 و 1600/0 به ترتیب برای شبکه های MLP و RBF بیانگر موفقیت روش پیشنهادی در مدلسازی رفتار غیرخطی سنسور NTC است.کلید واژگان: دما, سنسور NTC, پدیده خودگرمایی, مدلسازی, شبکه های عصبی}In the engineering systems, one of the most important measurable parameters is temperature. For measurement of temperature as for sensitivity, accuracy and term of physical required, different sensors as RTD, NTC, PTC, Thermo-couple are exist. One of the most important sensors is NTC that despite the many benefits, less than it used to be. Nonlinearity characteristic and self-heating phenomenon in the NTC are the biggest deterrents in practical applications. In this study, a new structure based on application of artificial neural network (ANN) has been suggested for modeling of the nonlinear and the self-heating phenomenons of NTC. Simulation results based on read generated laboratory data are presented to demonstrate the performance of the proposed structure. Mean square error of 0.0480 and 0.0370 are achieved based on MLP and RBF neural network, respectively.Keywords: Temperature, NTC sensor, Self-heating, Artificial Neural Network}
-
Automatic lip-reading plays an important role in human computer interaction in noisy environments where audio speech recognition may be difficult. However, similar to speech recognition, lip-reading systems also face several challenges due to variances in the inputs, such as with facial features, skin colors, speaking speeds, and intensities. In this study a new method has been proposed for extracting features from a video containing a certain Persian words without any audio signal. The method is based on the fast furrier transform combined with the color specification of the frames in the recorded video of the spoken word. To improve the system performance visual word has been used as the shortest element of visual speech. Five speaker, three men and two women, have participated for capturing the videos of the spoken words. After obtaining features from the videos an artificial neural network has been employed as classifier. The experimental results show the average accuracy about 86.8% in recognition 31 Persian words.Keywords: Automatic Lip-Reading, Fast Furrier Transform, Visual Word, Artificial Neural Network}
-
حرکات دست انسان حالتی از تعامل غیرکلامی است که در ارتباط بین انسان و رایانه مورد استفاده قرار می گیرد. شهودی و طبیعی بودن حرکات دست مهمترین عامل ایجاد انگیزه در محققان است که دست ها را برای بهبود تعامل بین انسان و رایانه مورد استفاده قرار دهند. در این مقاله جهت تشخیص حرکت دست، با استفاده از اختلاف فریم ها، دست به عنوان تنها شی متحرک در تصاویر جدا شده است. پس از آن، بردار ویژگی حرکت دست استخراج شده است. این بردار ویژگی به عنوان ورودی شبکه عصبی مصنوعی جهت طبقه بندی حرکات انتقالی دست استفاده شده است. برای استخراج بردار ویژگی دو روش ارائه شده است. بردار ویژگی اول حاصل از کدگذاری خط سیر انتهایی ترین پیکسل دست در طی فریم ها است. بردار ویژگی دوم، از دو هیستوگرام زاویه ای برای کدگذاری دست استفاده می کند. شناسایی شش حرکت مختلف دست در داده های آزمایشی با نرخ بازشناسی 95/54 درصد با استفاده از بردار ویژگی اول و تشخیص این حرکات با نرخ بازشناسی 95/53 توسط بردار ویژگی دوم، کارایی بردارهای ویژگی پیشنهادی در تشخیص حرکات دست را نشان می دهد. همچنین مقایسه ی بردارهای ویژگی پیشنهادی با بردار ویژگی یک روش متداول، برتری روش های پیشنهادی را از نظر دقت، تعداد ویژگی ها و زمان آموزش طبقه بند نشان می دهد.کلید واژگان: تشخیص حرکات انتقالی دست, تشخیص دست, کدگذاری خط سیر حرکت دست, هیستوگرام زاویه ای, شبکه عصبی مصنوعی}Human hand movements are used in the non-verbal interaction between human and computers. Intuitive and natural hand movements is the most important factor motivating researchers to use the hands to improve the human-computerinteraction. In this paper, for hand gesture recognition, hand as the only moving object in the video is detectedusing the difference between frames. After that, hand movement feature vector is extracted. This vector is used to detect hand gesture using artificial neural network. Two methods are proposed for feature-vector extraction. The first method codes themotion trajectory of the final hand pixel in the frames. The second method uses two angle histograms. Identifying six different gestures with recognition rate of 95.54 percent using the first method and 91.53 percent using the second method, shows the efficiency of the proposed system. Also, the comparison between the proposed feature vectors with a conventional method shows the superiority of theproposed methods in terms of accuracy, the number of features, and classifier training time.Keywords: Hand Gesture Recognition, Hand Detection, hand motion trajectory coding, Angle Histogram, Artificial neural network}
-
Nowadays, software cost estimation (SCE) with machine learning techniques are more performance than other traditional techniques which were based on algorithmic techniques. In this paper, we present a new hybrid model of multi-layer perceptron (MLP) artificial neural network (ANN) and ant colony optimization (ACO) algorithm for high accuracy in SCE called Multilayer Perceptron Ant Colony Optimization (MLPACO). Current research uses some of features for increasing accuracy of estimation among of the existing parameters has been considered for effort estimation in software projects, and then these selected features will be filtered by ACO algorithm in order to reach highest accuracy in estimation and optimization of MLP ANN method. The results show that this novel approach with high accuracy for more than 80% cases is better than algorithmic constructive cost model (COCOMO) in the majority cases. Also, the results of proposed algorithm show that mean magnitude of relative error (MMRE) in the proposed algorithm is lower than COCOMO model.Keywords: Software Cost Estimation, Artificial Neural Network, Ant Colony Optimization, Effort, Optimization}
-
Discrimination between iron deficiency (IDA) anemia and β-thalassemia trait (β-TT) is a time consuming and costly problem. Because, they have approximate similar effects on routine blood test indices, in some cases, the complementary tests, which are expensive and time consuming, would be needed for differentiate the anemia. Complete blood count (CBC) is a fast, inexpensive, and accessible medical test that is used as a primary test for diagnosis anemia. However, when the CBC indices cannot exactly state the subject, more advanced tests such as electrophoresis of hemoglobin must be performed. In this study, the CBC indices have been considered as the inputs of classifier and the chosen architecture is pattern-based input selection artificial neural network (PBIS-ANN). For evaluation the proposed method, traditional methods, which are still using for the problem such as Mentzer Index (MI), and several automated anemia diagnostic systems such as artificial neural networks (ANN), adaptive neuro-fuzzy inference system (ANFIS) and multi-layer perceptron (MLP) have been compared with the proposed method. The results indicate that the proposed method significantly outperforms the mentioned methods.Keywords: Iron Deficiency Anemia, β, Thalassemia Trait, Artificial Neural Network, Complete Blood Count, Hemoglobin}
-
Every woman is at risk of ovarian cancer; about 90 percent of women who develop ovarian cancer are above 40 years of age, with the high number of ovarian cancers occurring at the age of 60 years and above. Early and correct diagnosis of ovarian cancer can allow proper treatment and as a result reduce the mortality rate. In this paper, we proposed a hybrid of Synthetic Minority Over-Sampling Technique (SMOTE) and Artificial Neural Network (ANN) to diagnose ovarian cancer from public available ovarian dataset. The dataset were firstly preprocessed using SMOTE before employing Neural Network for classification. This study shows that performance of Neural networks in the cancer classification is improved by employing SMOTE preprocessing algorithm to reduce the effect of data imbalance in the dataset. To justify the performance of the proposed approach, we compared our results with the standard neural network algorithms. The performance measurement evaluated was based on the accuracy, F-measure, Recall, ROC Area Margin Curve and Precision. The results showed that SMOTE MLP (with above 96% accuracy) performed better than SMOTE RBF and standard RBF and MLP.Keywords: Artificial Neural Network, RBF, SMOTE, MLP, Data Imbalance, Ovarian Cancer}
-
Although decreasing rate of death in developed countries because of Myocardial Infarction, it is turned to the leading cause of death in developing countries. Data mining approaches can be utilized to predict occurrence of Myocardial Infarction. Because of the side effects of using Angioplasty as main method for diagnosing Myocardial Infarction, presenting a method for diagnosing MI before occurrence seems really important. This study aim to investigate prediction models for Myocardial Infarction, by applying a feature selection model based on Wight by SVM and genetic algorithm. In our proposed method, for improving the performance of classification algorithm, a hybrid feature selection method is applied. At first stage of this method, the features are selected based on their weights, using weight by SVM. At second stage, the selected features, are given to genetic algorithm for final selection. After selecting appropriate features, eight classification methods, include Sequential Minimal Optimization, REPTree, Multi-layer Perceptron, Random Forest, KNearest Neighbors and Bayesian Network, are applied to predict occurrence of Myocardial Infarction. Finally, the best accuracy of applied classification algorithms, have achieved by Multi-layer Perceptron and Sequential Minimal Optimization.Keywords: Artificial Neural Network, Sequential Minimal Optimization, REPTree, Knowledge Discovery in Databases, Myocardial Infarction}
-
One of the major problems that may occur in the differential protection systems of power transformers is mal-operation of the protection relays in sake of internal fault detection, because of similarity between this current and inrush current. This paper presents a novel approach for discriminating inrush current from internal fault in power transformers based on Improved Gravitational Search Algorithm (IGSA). For this purpose, an Artificial Neural Network (ANN) which is trained by IGSA has been applied to discrete sample data of internal fault and inrush currents in the transformers. Results show that, the used approach can discriminate between these two kinds of phenomenon, very well and also, has high accuracy and excellent reliability, in addition, it has less computational burden and complexity.Keywords: Activation Function, Artificial Neural Network, Differential Protection, Improved Gravitational Search Algorithm, Magnetizing Inrush Current, Transformer Fault}
-
الگوریتمهای هوش مصنوعی دارای کاربردهای فراوانی در حوزه پردازش تصویر و استخراج اطلاعات مکانی هستند. در این مقاله از الگوریتم ژنتیک و شبکه های عصبی مصنوعی در استخراج اطلاعات مکانی و در فرآیند تولید ارتوفتو نظیر مدلسازی هندسی تصاویر ماهوارهای و با بکارگیری توابع رشنال و Worldview- و 2 Ikonos- رستری استفاده شده است. در ابتدا قابلیت هندسی تصاویر ماهوارهای 2 DSM ساخت چندجملهای دوبعدی و سهبعدی مورد بررسی قرارگرفت و سپس در یک مطالعه جامع توابع مذکور با استفاده از الگوریتم ژنتیک بهینه گردید. با با تابع چندجملهای سهبعدی بهینه شده با الگوریتم ژنتیک Ikonos- توجه به کیفیت نقاط کنترل زمینی بهترین نتیجه برای تصویر ماهوارهای 2 0 پیکسل گردید و نشان داده / با تابع رشنال بهینه شده با الگوریتم ژنتیک برابر 030 Worldview- 0 پیکسل و برای تصویر ماهوارهای 2 / برابر 805 شد با استفاده از این الگوریتم میتوان مشکل ناپایداری مسائل معکوس در چندجملهای های با درجات بالاتر را حل نمود. همچنین با استفاده از 0 پیکسل صورت گرفت. در پایان کارایی / با دقت 54 Worldview- شبکه عصبی پرسپترون با 4 نرون در لایه میانی، مدلسازی هندسی تصویر 2 رستری مورد ارزیابی قرار گرفت و مشخص گردید این الگوریتمها امکان تولید DSM این الگورتیمها در درونیابی ارتفاعات در فرآیند تولید رستری با دقت بالاتر را نسبت به روش های معمول فراهم میسازند.Nowadays the artificial intelligent algorithms has considered in GIS and remote sensing. Genetic algorithm and artificial neural network are two intelligent methods that are used for optimizing of image processing programs such as edge extraction and etc. these algorithms are very useful for solving of complex program. In this paper, the ability and application of genetic algorithm and artificial neural network in geospatial production process like geometric modeling of satellite images for ortho photo generation and height interpolation in raster Digital Terrain Model production process is discussed. In first, the geometric potential of Ikonos-2 and Worldview-2 with rational functions, 2D & 3D polynomials were tested. Also comprehensive experiments have been carried out to evaluate the viability of the genetic algorithm for optimization of rational function, 2D & 3D polynomials. Considering the quality of Ground Control Points, the accuracy (RMSE) with genetic algorithm and 3D polynomials method for Ikonos-2 Geo image was 0.508 pixel sizes and the accuracy (RMSE) with GA algorithm and rational function method for Worldview-2 image was 0.930 pixel sizes. For more another optimization artificial intelligent methods, neural networks were used. With the use of perception network in Worldview-2 image, a result of 0.84 pixel sizes with 4 neurons in middle layer was gained. The final conclusion was that with artificial intelligent algorithms it is possible to optimize the existing models and have better results than usual ones. Finally the artificial intelligence methods, like genetic algorithms as well as neural networks, were examined on sample data for optimizing interpolation and for generating Digital Terrain Models. The results then were compared with existing conventional methods and it appeared that these methods have a high capacity in heights interpolation and that using these networks for interpolating and optimizing the weighting methods based on inverse distance leads to a high accurate estimation of heights.Keywords: Geospatial information, Geometric modeling, Height interpolation, Genetic Algorithm, Artificial Neural Network}
-
یادگیری الکترونیکی با از بین بردن محدودیت زمان و مکان کلاس حضوری، کاربرد گسترده ای در ارتباط بین دانشجو و آموزگار پیدا کرده است. از سوی دیگر مولفه های هوشمندی مانند فراهم ساختن بازخورد و راهنمایی برای دانشجو کیفیت آموزش را افزایش میدهد، اما روش های کنونی هوشمندسازی هزینه پیاده سازی بالایی دارند. این پژوهش روشی جدید برای هوشمندی یادگیری الکترونیکی با هزینه پایین معرفی مینماید. هوشمندی در دو مولفه ارزیابی دانش و انتخاب راهنمایی مناسب حین حل مساله نمود می یابد. در این روش از شبکه بیزی برای ارزیابی دانش دانشجو و از شبکه عصبی مصنوعی برای انتخاب راهنمایی مناسب استفاده می شود. ساختار هر دو شبکه تنها توسط داده آموزشی تعیین می شود. روش پیشنهادی بر روی یک سیستم یادگیری الکترونیکی پیاده سازی شده و ارزیابی می شود. دقت بالای 90 درصدی هر دو شبکه و هزینه پیاده سازی پایین از مهم ترین مزایای روش پیشنهادی است. همچنین ساختار مبتنی بر داده آموزشی دو شبکه امکان استفاده از آن را در سیستم های متنوع یادگیری الکترونیکی در حال استفاده با دامنه های گوناگون دانش فراهم می آورد.
کلید واژگان: یادگیری الکترونیکی, هوشمندسازی آموزش, شبکه بیزی, شبکه عصبی مصنوعی}: E-learning, by eliminating the limitation of space and time to attend in classes, has found a widespread use in communication between students and teachers. On the other hand, intelligence components, such as providing feedback and hint for students will increase the quality of education. But current methods for implementation of intelligent have high costs. This paper introduces a new method to provide intelligent e-learning at a low cost. Intelligence emergences in two components, including knowledge assessment and selection of appropriate hint during the problem solving. In this approach, a Bayesian network utilized to assess student knowledge and an Artificial Neural network utilized to select the appropriate hint. The structure of both networks is determined by training data. The proposed method is implemented and assessed in an e-learning system. The above 90 percent accuracy in both networks and low implementation cost are of the important advantages of the proposed method. The structure of the two networks which is based on training data makes it possible to use it in a variety of systems use e-learning systems with a diverse range of knowledge.
Keywords: e-Learning, Intelligent Learning, Bayesian Networks, Artificial neural network}
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.