content-based filtering
در نشریات گروه فناوری اطلاعات-
سیستم های توصیه گر، وظیفه راهنمایی و هدایت کاربر جهت انتخاب بهینه آیتم ها، مطابق با علایق و سلیقه های آنها را بر عهده دارند. علی رغم حدود سه دهه سابقه تحقیقات بر روی سیستم های توصیه گر، ولی موضوع مذکور هنوز یکی از چالش های تحقیقاتی به روز می باشد. این سیستم ها با شخصی سازی پیشنهادات، باعث صرفه جویی در وقت و افزایش رضایت کاربران می گردند. این سیستم ها در اغلب سایت های معتبر خارجی و داخلی مورد استفاده قرار گرفته اند. در سیستم های توصیه گر، مهم ترین و پرکاربردترین روش پالایش داده ها، روش پالایش اشتراکی می باشد. در این مقاله نسبت به پیاده سازی سه سیستم توصیه گر فیلتر اشتراکی مبتنی بر محاسبه ضریب همبستگی بین کاربران، انتخاب تعداد بهینه همسایه ها و محاسبه امتیازات وزنی اقدام شده و بهترین روش با کمترین خطا به عنوان مدل مورد نظر انتخاب شده است. ورودی سیستم داده های تحقیقاتی مووی لنز با حدود 100 هزار امتیاز می باشد. روش بکار رفته نسبت به آخرین مقاله ای که از روش همبستگی ترکیبی استفاده کرده است 3/29 درصد مقدار خطای RMSE را بهبود می بخشد.
کلید واژگان: سیستم های توصیه گر، ضریب همبستگی، فیلتر اشتراکی، فیلمA Recommendation system is a BI tool that it uses data mining methods for guiding and helping the user to select the best items based on her/his preferences and in the shortest time. Despite more than two decades of academic research on recommendation systems, this issue is still one of the most up-to-date research challenges. Recommendation systems save the users time, increase their satisfaction and their loyalty to sales sites and lead to the development of e-commerce, by personalizing the recommendations of goods or services to site users. Nowadays, recommendation systems have many applications in various sectors of e-commerce, especially in media products such as books, movies, and music. The famous e-commerce sites such as eBay, Amazon, and Netflix and domestic sites such as Digikala, Divar, and Filimo widely use recommendation systems. These systems use a variety of big data filtering methods to provide appropriate recommendations. The most important and widely used filtering method is collaborative filtering (CF). In this paper, we implement three CF recommender systems based on the correlation coefficient between users, selecting the optimal number of neighbors and calculating weighted scores for unwatched movies. The best method with the least error is selected as the desired model. We use Movielens ml-latest-small 100k research dataset with 9742 movies and 610 users as input. The results showed 3.29% less RMSE error compared with the latest research that has used the correlation method.
Keywords: Recommendation Systems, Content Based filtering, Collaborative filtering, movie -
حجم بسیار و روبه رشد اطلاعات بر روی اینترنت، فرآیند تصمیم گیری و انتخاب اطلاعات، داده یا کالاهای موردنیاز را، برای بسیاری از کاربران وب دشوار کرده است. سامانه های پیشنهاددهنده (توصیه گر)1 ، باهدف رفع این چالش به وجود آمده اند و تلاش می کنند تا از میان حجم عظیم اطلاعات، اطلاعات خاص و مفید را با توجه به علاقه و سلیقه کاربر و تجربیات کاربران گذشته به وی پیشنهاد دهند. تاکنون سامانه های پیشنهاددهنده زیادی در زمینه های کاربردی متنوع ازجمله فیلم، موسیقی، کتاب و... ایجادشده اند. انتخاب یک سفر مناسب، پیشنهاد هتل و... با توجه به بودجه ی فرد، معمولا سختی ها و نگرانی های زیادی را برای کاربران به همراه دارد و عموما با صرف زمان و انرژی زیادی انجام می گیرد. لذا در این مقاله یک سیستم پیشنهاددهنده سفر و هتل ارایه می شود که از ترکیب روش فیلترهای مختلف ساخته شده است تا دقت آن دوچندان شود. این سیستم برای ارایه پیشنهادهای نهایی خود، سلایق کاربر جاری، کیفیت مجموعه های خدمات دهنده و تجربیات گذشته کاربران مشابه با کاربر جاری را مدنظر قرار داده و بدین ترتیب علاوه بر ارایه پیشنهادهای دقیق تر، مشکل شروع سرد2 را که معمولا برای کاربران جدید بروز می کند که در سیستم ثبت نام می کنند و سیستم هیچ اطلاعاتی از نظرات یا علایق کاربر ندارد، نیز برطرف می نماید. در چنین شرایطی، سامانه ها معمولا از یادگیری فعال3 یا استفاده از ویژگی های شخصیتی کاربر، برای حل مشکل استفاده می کنند.
کلید واژگان: سیستم پیشنهاددهنده، فیلترینگ ترکیبی، الگوریتم خفاش، فیلترینگ مشارکتی، فیلترینگ مبتنی بر محتویThe growing amount of information on the internet has made it difficult for many web users to make the decision-making and selection of information, data or goods. Recommended systems are designed to address this challenge and try to offer specific and useful information with respect to user tastes and past user experiences. So far, many offering systems have been developed in a variety of applications including movies, music, books, hotels etc. Choosing the right trip, the hotel proposal and so on, with regard to the individual's budget usually have a lot of difficulties and concerns for users and generally takes a lot of time and energy. In this paper, a travel and hotel recommendation system is developed which is constructed from combination of different filtering methods to maximize accuracy. The system is considering the current user's preferences, the quality of the service packages and past experiences of the same users with the current user in order to providing more accurate suggestions. It also eliminates the cold start problem.
Keywords: Recommended System, Bat Algorithm, Hybrid Filtering, Collaboration Filtering, Content-Based Filtering, Meta-Heuristic Algorithm -
Filtering of web pages with inappropriate contents is one of the major issues in the field of intelligent network''s security. Having a good intelligent filtering method with high accuracy and speed is needed for any country in order to control users'' access to the web. So, it has been considered by many researchers. Presenting web pages in an understandable way by machines is one of the most important preprocessing steps. Thus, offering a way to describe web pages with lower dimensions would be very effective, especially in determining the nature of web pages with respect to whether they should be filtered out or not. In this paper, we propose an automatic method to detect forbidden keywords from web pages. Next, we define a new representation of web pages in vector form which consists of weighted sum and frequency of forbidden keywords in different parts of web pages named RWSF. For this, a ranking dictionary of keywords including forbidden keywords is used. To evaluate the proposed method, 2643 pages consisting of 1311 normal pages and 1332 forbidden pages were used. Among these, 1851 pages were used to train the system and 792 pages were used for system evaluation. The system has been assessed using various classifiers such as: k-Nearest Neighbor, Support Vector Machines, Decision Tree and Artificial Neural Networks. Evaluation results indicate the high efficiency and accuracy of the proposed method in all classifiers.Keywords: Content based filtering, Forbidden keywords extraction, Ranking keywords, Web page representation
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.