به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

firefly algorithm

در نشریات گروه فناوری اطلاعات
تکرار جستجوی کلیدواژه firefly algorithm در نشریات گروه فنی و مهندسی
  • بهنام فرناد، کامبیز مجیدزاده *، محمد مصدری، امین بابازاده سنگر

    کاربرد گسترده رایانش ابری ، سرویس های برنامه ای گسترده ای را در اینترنت ایجاد می کند که چالش جدیدی برای مدل ها و الگوریتم های ترکیب سرویس ابری است. در این مقاله یک روش فراابتکاری نوین برای ترکیب سرویس های ابری ارایه شده است. الگوریتم کرم شب تاب FA یکی از پرکاربردترین الگوریتم های فرا ابتکاری بر گرفته از طبیعت است که آن را از رفتار کرم های شب تاب در حرکت به منابع نور در سال 2008 شبیه سازی کرده اند. الگوریتم پیشنهادی، حاصل شبیه سازی با جدیدترین اطلاعات حاصل از رفتار کرم شب تاب ها می باشد و با تغییرات جدیدی که بر روی این الگوریتم صورت گرفته است سبب تعادل آن در قابلیت اکتشاف و بهره برداری شده و آن را مناسب برای حل مساله ترکیب سرویس ابری می کند. نتایج بدست آمده نشان می دهد که روش مطرح شده نسبت روش های معروف دیگر در زمینه کیفیت جواب، کارایی (مخصوصا بر روی داده ای با تعداد نمونه زیاد) بهتر عمل کرده و جواب ها را در کمترین زمان ممکن بدست می آورد.

    کلید واژگان: بهینه سازی، الگوریتم کرم شب تاب، ترکیب سرویس های ابری، فراابتکاری

    The widespread application of cloud computing creates a wide range of application services on the Internet, which is a new challenge for cloud service composition models and algorithms. In this article, a new meta-heuristic method for combining cloud services is presented. The firefly algorithm is one of the most widely used metaheuristic algorithms based on nature, which has been simulated from the behavior of fireflies in moving to light sources in 2008. The proposed algorithm is the result of simulation with the latest information obtained from the behavior of fireflies, and with the new changes that have been made to this algorithm, it is balanced in the ability of exploration and exploitation, making it suitable for solving the problem of combining cloud services. The obtained results show that the proposed method works better than other State-of-the-Art algorithms in the field of service quality, and efficiency (especially on data with a large number of samples) and obtains the answers in the shortest possible time.

    Keywords: Optimization, Firefly Algorithm, Cloud Service Composition, Metaheuristic
  • Reza Molaee Fard, Payam Yarahmadi *
    Due to the growing number of articles and books available on the web, it seems necessary to have a system that can extract users' articles and books from the vast amount of information that is increasing day by day. One of the best ways to do this is to use referral systems. In this research, a method is provided to improve the recommender systems in the field of article recommendation to the user. In this research, DBSCAN clustering algorithm is used for data clustering. Then we will optimize our data using the firefly algorithm, then the genetic algorithm is used to predict the data, and finally the recommender system based on participatory filtering provides a list of different articles that can be of interest to the user. Be him. The results of the evaluation of the proposed method indicate that this recommending system has a score of 94% in the accuracy of the system. And in the call section, it obtained a score of 91%, which according to the obtained statistics, it can be said that this system can correctly suggest up to 90% of the user's favorite articles to the user.
    Keywords: recommender system, DBSCAN algorithm, Firefly Algorithm, Genetic Algorithm
  • Amir Hossein Damia, Mohammad Mehdi Esnaashari *
    Software testing is an expensive and time-consuming process. These costs can be significantly reduced using automated methods. Recently, many researchers have focused on automating this process using search algorithms. Many different methods have been proposed, all of which using a means of heuristic or meta-heuristic search algorithms. The main problem with these methods is that they are usually stuck in local optima. In this paper, to overcome such a problem, we have combined the firefly algorithm (FA) and asexual reproduction optimization algorithm (ARO). FA is a bio-inspired algorithm that is very efficient at exploitation and local searches; however, it suffers from poor exploration and is prone to local optima problem. On the other hand, ARO can be used for escaping from local optima. For this combination, we have inserted ARO into the steps of FA for increasing the population diversity. We have utilized this combination for automatic test case generation with the aim of covering all finite paths of the control flow graph. To evaluate the performance of the proposed method, we have utilized it for generating test cases for a number of programs. Results have indicated that, while giving similar results in terms of the test coverage, the proposed method is significantly better than the existing state of the art algorithms in terms of the number of fitness evaluations. Compared algorithms are FA, ARO, traditional genetic algorithm (TGA), adaptive genetic algorithm (AGA), adaptive particle swarm optimization (APSO), hybrid genetic tabu search algorithm (HGATS), random search (RS), differential evolution (DE), and hybrid cuckoo search and genetic algorithm (CSGA).
    Keywords: Software Test, Test Data Generation, Search Algorithms, Firefly Algorithm, Asexual Reproduction Optimization Algorithm
  • مسلم محمدی جنقرا*، کوثر عباس خواه

    ژن های خانه دار در تمامی شرایط زیستی و مراحل رشد بافت حاضر بوده و همیشه بیان می شوند. ژن خانه دار، ژن بنیادی است که برای نگهداری از عملکرد اولیه سلول موردنیاز بوده و در بیشتر سلول های یک ارگانیسم بیان شده و پروتئین های متناظر را می سازد. در حالت عادی، برخی از ژن ها در شرایط و گام های متفاوت از چرخه سلولی بیان نمی شوند که می تواند دینامیک حضور یک پروتئین و به تبع آن برهمکنش های گذرا یا پایدار را مشخص کند. برهمکنش های پایدار در تعیین کمپلکس های پروتئینی نقش مهمی دارند. یکی از چالش های موجود در زیست شناسی سیستمی، تعیین حد آستانه های مناسب برای تعیین پروتئین های فعال در هر زمان و مشخص کردن برهم کنش های پایدار هست. هدف ما در این مقاله، تعیین حد آستانه منحصر به هر ژن برای مشخص کردن ژن های خانه دار و برهم کنش های پایدار هست. با استفاده از الگوریتم بهینه سازی فرا ابتکاری کرم شب تاب و تابع جذابیت مبتنی بر ترکیب مجموعه کمپلکس های استاندارد و بیان هم زمان ژن ها، حد آستانه مخصوص هر ژن تعیین      می شود. نتایج تجربی روی داده های موجود نشان می دهد که حد آستانه های ایجادشده با روش ابداعی نتایج بهتری نسبت به روش های قبلی داشته است.

    کلید واژگان: برهم کنش پروتئین-پروتئین، برهم کنش پایدار، الگوریتم کرم شب تاب، ژن های خانه دار، آستانه گذاری
    Moslem Mohammadi Jenghara*, Kosar Abbaskhah

    Housekeeping genes are expressed in all biological conditions and stages of tissue growth. A housekeeping gene is the basic gene required for maintaining the cell's primary function and is expressed in most cells of an organism to produces corresponding proteins. Normally, some genes are not expressed in different conditions and steps of the cell cycle that can determine the dynamics of the presence of a protein and consequently transient or stable interactions. Stable interactions play an important role in the determination of protein complexes. One of the challenges in system biology is to determine the appropriate thresholds to determine active proteins at each time point and to identify stable interactions. Our goal in this paper is to determine the unique threshold for each gene to characterize housekeeping genes and stable interactions. Determination of the specific threshold for each gene is determined by using the firefly optimization algorithm with the attraction function based on the combination of the standard protein complex and co-expression of genes. Experimental results on the existing dataset show that the thresholds created by the proposed method had better results than the previous methods.

    Keywords: Protein-protein interaction, Stable interactions, Firefly algorithm, Housekeeping gene, Thresholding
  • Fatemeh Jafarnejad Rezaiyeh, Kambiz Majidzadeh *
    The Firefly optimization algorithm (FA) is one of the practical nature-inspired metaheuristic approaches in 2008, which simulated the behavior of fireflies in the movement toward the light sources. Recent studies on this beautiful creature have revealed new behaviors that strongly require us to review them. The proposed algorithm NMFA is the simulation results with the latest information from the behavior of fireflies. The NMFA is used for data clustering and optimization of continuous problems. The experimental results of the testing on optimization of 26 standard functions show that the proposed method works best in terms of success rate and convergence than the FA, HS, ABC, and IWO algorithms and makes an important and substantial difference in optimization. The non-parametric, statistical, and pairwise tests show the superiority of the modern firefly algorithm. The NMFA can cluster the datasets like the conventional K-means algorithm and obtain a significant result among the well-known methods.
    Keywords: Optimization, Firefly Algorithm, Clustering, Metaheuristic
  • الهام معین الدینی*

    ته نقش گذاری روشی برای جاسازی ته نقش درون یک تصویر دیجیتال به منظور حفاظت از حق طبع و نشر آن است. ته نقش می بایستی دارای دو خاصیت متضاد شفافیت و مقاومت باشد. دو عامل عمده بهبود این دو پارامتر مکان جاسازی ته نقش و تعیین حدود آستانه بهینه برای جاسازی ته نقش در تصاویرمی باشند. در این مقاله یک روش ته نقش گذاری جدید و مقاوم در دامنه تبدیل هادامارد ارائه شده است که جهت انتخاب بلوک ها و حدود آستانه مناسب از  الگوریتم کرم شب تاب ترکیبی(HFA) استفاده می کند.HFA نسخه تغییر یافته الگوریتم کرم شب تاب برای تولید هم زمان  مقادیر گسسته و غیر تکراری جهت انتخاب بلوک ها و مقادیر پیوسته برای انتخاب حدود آستانه است که در این مقاله برای اولین بار ارائه شده و بکار رفته است.در هر بلوک انتخاب شده از تصویر میزبان، پس از انجام تبدیل هادامارد چهار بیت ته نقش با استفاده از حدود آستانه بهینه جاسازی می شوند. بازیابی ته نقش بصورت نیمه کور انجام می شود و تابع هدف الگوریتم بهینه ساز، ترکیبی از میزان شفافیت و مقاومت ته نقش است. این روش هم برای تصاویر خاکستری و هم برای تصاویر رنگی قابل اجرا است. نتایج تجربی نشان دادند که روش ارائه شده نه تنها دارای مقاومت بالایی در برابر حملات گوناگون است بلکه از نظر شفافیت نیز نتایجی بهتر از سایر روش های مشابه موجود تولید می کند.

    کلید واژگان: ته نقش گذاری، الگوریتم کرم شب تاب، تبدیل هادامارد، حد آستانه
    *Elham Moeinaddini

    Watermarking is a method for embedding a watermark in a digital image to preserve its copyright. Watermark should have two contradictory properties of transparency and robustness. Locations of embedding watermark in the image and threshold values play an important role in improving these two properties. In this paper, a novel robust image watermarking scheme in hadamard transform domain is proposed which uses Hybrid Firefly Algorithm (HFA) for selecting suitable blocks and threshold values to balance transparency and robustness. HFA is the modified version of firefly algorithm which is proposed and used in this paper for first time.This algorithmgenerates distinct and discrete values for selecting blocks and simultaneously continues values for selecting threshold values. Hadamard transform applies on each selected block of the cover image and four watermark bits are embedded in one block using selected threshold values. Watermark detection is done blindly and objective function of the optimization algorithm is a combination of transparency and robustness. This scheme is applicable to color and gray scale images. Experimental results show that the proposed scheme is highly robust against different attacks and gives better results in terms of transparency compared to other similar methods.

    Keywords: watermarking, Firefly Algorithm, Hadamard transform, threshold values
  • Hasan Rabani, Farhad Soleimanian Gharehchopogh *
    The structure of the community is one of the important features of social networks. A community is a sub graph which nodes have a lot of connections to nodes of inside the community and have very few connections to nodes of outside the community. The objective of community detection is to separate groups or communities that are linked more closely. In fact, community detection is the clustering of the network, and the community separates a graph. In recent years, public methods suffer from inefficiency because of the high complexity of time and the need for full access to graph information. In contrast, smart methods such as meta-heuristic algorithms, the use of low parameters and much less complex time complexity have been among the most popular methods in recent years. These methods have good features, but they still face problems such as dependence on finding the best point in search space, global updates, and poor quality due to the formation of large communities and others. In this paper, in order to improve the mentioned problems, a method is proposed based on combining the Firefly Algorithm (FA) and Learning Automata (LA). In the proposed model, LA is used to increase the efficiency of the FA. Choosing the best neighbours for the FA agents is done using the LA. The results from the four datasets of Karate, Dolphins, Polbooks, and Football show that the proposed model has more Normalized Mutual Information (NMI) than other models.
    Keywords: Community Detection, Clustering, Firefly Algorithm, Learning Automata
  • Hamed Agahi*, Azar Mahmoodzadeh, Marzieh Salehi
    Handwritten digit recognition, as an important issue in pattern classification, has received considerable attention of many researchers to develop theoretical and practical aspects of this problem. The goal is to recognize a printed digit text or a scanned handwritten using an automated procedure. In this paper an optical character recognition system with a multi-step procedure is presented for Farsi handwritten digit classification. First, a pre-processing course is performed on the image to enhance and make prepare the image for the main steps. Then multiple features are extracted which are believed to be effective in the classification step, among which a multi-objective genetic algorithm selects those with more discriminative characteristics in order to reduce the computational complexity of the classification steps. Following this, only the selected features are extracted from the digit images to be entered to three classifiers. Once the classifiers are trained, their outputs are fed into a classifier ensemble to make the final decision. The weights of the linear combination of classifiers are adjusted by an evolutionary firefly algorithm which optimizes the F-criterion. Evaluation of the proposed technique on the standard HODA database demonstrates that the algorithm of this paper attains higher performance indices including F-measure of 98.88%, compared to other existing methods.
    Keywords: Classifiers ensemble, Feature extraction, Feature selection, Firefly algorithm, Multi-objective genetic algorithm, Optical character recognition
  • Sorayya Amouei *, Kamal Mirzaie, Fatemeh Saadatjoo, Ali Mohammad Latif
    Vector Quantization (VQ) was the powerful technique in image compression. Generating a good codebook is an important part of VQ. There are various algorithms in order to generate an optimal codebook. Recently, Swarm Intelligence (SI) algorithms were adapted to obtain the near-global optimal codebook of VQ. In this paper, we proposed a new method based on a hybrid particle swarm optimization (PSO) and firefly algorithm (FA) to construct the codebook of VQ. The proposed method used PSO algorithm as the initial of FA to develop the VQ. This method is called PSO-FA model. Experimental results indicate that the proposed model is faster than FA. Furthermore, the reconstructed images get higher quality than FA, but it is no significant superiority to the PSO algorithm.
    Keywords: Image Compression, Vector Quantization, Swarm Intelligence, Firefly Algorithm, Particle Swarm Optimization Algorithm
  • Sosan Sarbazfard, Ahmad Jafarian *
    In this paper, a new and an e ective combination of two metaheuristic algorithms, namely Fire y Algorithm and the Di erential evolution, has been proposed. This hybridization called as HFADE, consists of two phases of Di erential Evolution (DE) and Fire y Algorithm (FA). Fire y algorithm is the nature- inspired algorithm which has its roots in the light intensity attraction process of re y in the nature. Di erential evolution is an Evolutionary Algorithm that uses the evolutionary operators like selection, recombination and mutation. FA and DE together are e ective and powerful algorithms but FA algorithm depends on random directions for search which led into retardation in nding the best solution and DE needs more iteration to nd proper solution. As a result, this proposed method has been designed to cover each algorithm de ciencies so as to make them more suitable for optimization in real world domain. To obtain the required results, the experiment on a set of benchmark functions was performed and ndings showed that HFADE is a more preferable and e ective method in solving the high-dimensional functions.
    Keywords: Differential Evolution, Firefly Algorithm, Global Optimization, Hybrid Algorithm
  • Mehdi Sadeghzadeh *

    In data grid, using reservation is accepted to provide scheduling and service quality. Users need to have an access to the stored data in geographical environment, which can be solved by using replication, and an action taken to reach certainty. As a result, users are directed toward the nearest version to access information. The most important point is to know in which sites and distributed system the produced versions are located. By selecting a suitable place for versions, the versions having performance, efficiency and lower access time are used. In this study, an efficient method is presented to select the best place for those versions created in data grid by using the users’ firefly algorithm which is compared with cooling algorithm. Results show that firefly algorithm has better performance than others.This means firefly algorithm is better and more accurate than genetic algorithm and particle swarm optimization in data replication task.

    Keywords: Firefly algorithm, data grid, Data Replication
  • مهتاب روزبهانی*، میثم مرادی، پروانه منصوری
    در ریاضیات و علوم رایانه یک مساله بهینه سازی، مساله یافتن بهترین راه حل از میان همه راه حل های ممکن می باشد. با توجه به اهمیت مساله کوله پشتی درمباحث علوم رایانه، از الگوریتم های مختلفی برای حل آن استفاده شده است. مساله کوله پشتی یک مساله بهگزینی ترکیبیاتی است که هدف از حل آن یافتن بیشترین سود با در نظر گرفتن ظرفیت کوله پشتی است. با توجه به اینکه مساله کوله پشتی یک مساله ماکزیمم سازی مقید است، دراین تحقیق ابتدا یک مدل ریاضی در قالب یک تابع مینیمم سازی و بدون قید برای این مساله طراحی شده، سپس این مدل روی الگوریتم های بهینه سازی توده ذرات، کرم شب تاب و کلونی زنبورمصنوعی در محیط نرم افزار متلب اجرا گردیده که نتایج نشان می دهد الگوریتم کلونی زنبورمصنوعی روی مدل ارائه شده نسبت به دو الگوریتم دیگر عملکرد بهتری از خود نشان داده است. مزیت مدل ارائه شده این است که تابع هدف مساله، به دلیل اینکه مینیمم سازی و بدون قید مدل شده، قابل پیاده سازی با بسیاری از الگوریتم های شبه بیولوژیکی است.
    کلید واژگان: مساله کوله پشتی، الگوریتم بهینه سازی پرتو ذرات، الگوریتم کرم شب تاب، الگوریتم کلونی زنبور مصنوعی
    Mahtab Roozbahani*, Meysam Moradi, Parvaneh Mansoori
    In mathematics and computer science an optimization problem, the problem is finding the best solution among all possible solutions. Given the importance of the knapsack in computer sciences, different algorithms are used to solve it. Knapsack problem is a combinational problem of selectivity and the purpose of solving the most benefit by taking the capacity is the tolerable knapsack. Since the knapsack is a problem of constrained maximization. In this study, a mathematical model in the form of a function unlimited minimization and designed for it, hen this model on Particle Swarm Optimization , Firefly Algorithm and Artificial Bee Colony has been implemented in MATLAB software environment, The results show that the artificial bee colony algorithm, the model is better than the other two algorithms .The advantage of this model is the objective function , because minimization and unlimited models , to implement with many Bio-Inspired algorithms.
    Keywords: Knapsack Problem, Particle Swarm Optimization Algorithm, Firefly Algorithm, Artificial Bee Colony Algorithm
  • Azita Yousefi *, Bita Amirshahi

     In this paper we have tried to develop an altered version of the artificial bee colony algorithm which is inspired from and combined with the meta-heuristic algorithm of firefly. In this method, we have tried to change the main equation of searching within the original ABC algorithm. On this basis, a new combined equation was used for steps of employed bees and onlooker bees. For this purpose, we had to define several new parameters for improving the quality of the proposed method. In this regard, we have introduced two new parameters to the method. The new method has been simulated within the software of MATLAB and it has also been run according to objective functions of SPHERE, GRIEWANK and ACKLEY. All these functions are standard evaluation functions that are generally used for meta-heuristic algorithms. Results that were yielded by the proposed method were better than the results of the initial algorithm and especially by increasing the number of variables of the problem, this improvement becomes even more significant. We have successfully established a better balance between concepts of exploration and exploitation, especially with increasing the repetition cycles, we have successfully controlled the concept of utilization with random parameters. Tests have been ran more than 500 times.

    Keywords: ABC algorithm, Firefly algorithm, Onlooker bee, Employed bee, Exploration
  • Fatemeh Shomalnasab, Mehdi Sadeghzadeh, Mansour Esmaeilpour
    Recommender Systems (RS) provide personalized recommendation according to user need by analyzing behavior of users and gathering their information. One of the algorithms used in recommender systems is user-based Collaborative Filtering (CF) method. The idea is that if users have similar preferences in the past, they will probably have similar preferences in the future. The important part of collaborative filtering algorithms is allocated to determine similarity between objects. Similarities between objects are classified to user-based similarity and item-based similarity. The most popular used similarity metrics in recommender systems are Pearson correlation coefficient, Spearman rank correlation, and Cosine similarity measure. Until now, little computation has been made for optimal similarity in collaborative filtering by researchers.For this reason, in thisresearch, weproposean optimal similaritymeasure via a simple linear combination of values and ratio of ratings for user-based collaborative filtering by use ofFireflyalgorithm; and we compare our experimental results with Pearson traditional similarity measure and optimal similarity measure based on genetic algorithm. Experimental results on real datasets show that proposed method not only improves recommendation accuracy significantly but also increases quality of prediction and recommendation performance.
    Keywords: Recommender System, Collaborative Filtering, Similarity Measure, Firefly Algorithm
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال