به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت

جستجوی مقالات مرتبط با کلیدواژه « سرطان سینه » در نشریات گروه « فناوری اطلاعات »

تکرار جستجوی کلیدواژه « سرطان سینه » در نشریات گروه « فنی و مهندسی »
  • امیرحسن قیطاسی، عبدالحسین رضایی*، سیده شهربانو فلاحیه حمیدپور، فرزاد خواجه خلیلی
    سرطان سینه از شایع ترین دلایل مرگ و میر در میان زنان جهان می باشد، اما تشخیص زودهنگام و دقیق این نوع سرطان می تواند درمان را به طرز چشمگیری بهبود بخشد. تصویربرداری حرارتی یکی از روش های اولیه تشخیص سرطان سینه است. همچنین از سیستم تشخیص کامپیوتری می توان برای کمک به پزشکان برای افزایش دقت تفسیر نتایج استفاده کرد. در این مقاله، یک سیستم تشخیص کامپیوتری هوشمند برای تشخیص سرطان سینه با استفاده از تصاویر حرارتی ارایه شده است. سیستم هوشمند تشخیص کامپیوتری ارایه شده شامل روش SFTA برای استخراج ویژگی و الگوریتم SVM ، kNN و D-Tree برای طبقه بندی نتایج می باشد. عملکرد سیستم تشخیص کامپیوتری هوشمند ارایه شده با استفاده از پایگاه داده DMR-IR و پایگاه داده دانشگاه Fluminense Federal و MATLAB2018 برای استفاده از الگوریتم انتخاب ویژگی فاخته و بدون الگوریتم انتخاب ویژگی ارزیابی شده است. نتایج نشان می دهد که بهترین میانگین صحت، حساسیت و اختصاصیت به ترتیب 99، 5/99 و 03/98 درصد می باشد که بابکارگیری الگوریتم انتخاب ویژگی فاخته و الگوریتم طبقه بندی کننده SVM بدست آمده است. همچنین سیستم تشخیص کامپیوتری ارایه شده دارای مزایایی نسبت به سایر سیستم های تشخیص کامپیوتری می باشد. این نتایج نشان می دهد که استفاده از روش استخراج ویژگی SFTA، الگوریتم انتخاب ویژگی فاخته، الگوریتم طبقه بندی SVM و داده های پایگاه داده DMR-IR در سیستم تشخیص کامپیوتری پیشنهادی، می تواند باعث بهبود نتایج ارزیابی شود.
    کلید واژگان: سرطان سینه, الگوریتم انتخاب ویژگی فاخته, تصاویرحرارتی, استخراج ویژگی و انتخاب ویژگی}
    Amirhassan Gheytasi, Abdalhossein Rezai *, Seyedeh Shahrbanoo Falahieh Hamidpour, Farzad Khajeh-Khalil
    Breast cancer is one of the most common causes of death among women around the world, but early and accurate diagnosis of this type of cancer can dramatically improve treatment. Thermal imaging is one of the primary methods of diagnosing breast cancer. The computer diagnosis system can also be used to help physicians to increase the accuracy of interpretation of results. This paper presents an intelligent computer diagnostic system for the detection of breast cancer using thermal imaging. The proposed intelligent computer diagnosis system includes SFTA method for feature extraction and SVM, kNN and D-Tree algorithms for classification of results. The performance of the proposed intelligent computer diagnosis system is evaluated using the DMR-IR and Fluminense Federal University databases and MATLAB2018, when using the cuckoo feature selection algorithm and without using the feature selection algorithm. The results show that the average accuracy, sensitivity and specificity are 99%, 99.5% and 98.03%, respectively, using the cuckoo feature selection algorithm and SVM classification algorithm. Also, the presented computer diagnostic system has advantages compared to other computer diagnosis systems. These results indicate that the use of SFTA feature extraction method, cuckoo feature selection algorithm, SVM classification algorithm and DMR-IR database in the proposed computer diagnosis system can improve the evaluation results.
    Keywords: breast cancer, cuckoo feature selection algorithm, thermal imagery, feature extraction, feature selection}
  • حمزه حسن نیا، مهدی چهل امیرانی، مرتضی ولی زاده*
    ماموگرافی رایج ترین و موثرترین روش غربالگری برای تشخیص سرطان پستان است. در این تحقیق، یک سیستم کمکی برای طبقه بندی  تومورهای خوش خیم و بدخیم در تصاویر ماموگرافی دیجیتال ارایه شده است. در این روش ابتدا فیلتر میانه برای حذف نویز استفاده شده و سپس مصنوعات و ماهیچه ی پکتورال در صورت وجود حذف می شوند. برای ناحیه بندی ماموگرام و استخراج ناحیه های موردنظر ابتدا یک الگوریتم جدید برای افزایش تباین نواحی مشکوک ارایه شده است که از تفاضل بهبود یافته تصویر اصلی و مکمل آن بهره می برد، سپس الگوریتم خوشه بندی C میانگین فازی بر مبنای هیستوگرام به تصویر اعمال شده و ناحیه های موردنظر با دقتی مناسب استخراج می شوند. در مرحله ی بعد ویژگی های بافت و هندسی استخراج می شوند و در نهایت طبقه بندهای ماشین بردار پشتیبان خطی و درخت تصمیم برای دسته بندی ناحیه های موردنظر به دو کلاس خوش خیم و بدخیم، استفاده می شوند. سیستم پیشنهادی بر روی تصاویر پایگاه های داده ی MIAS و DDSM آزمایش شده است. نتایج به دست آمده نشان گر این است که دقت سیستم پیشنهادی در مقایسه با تحقیقات پیشین امیدوار کننده است.
    کلید واژگان: سرطان سینه, ماموگرافی, افزایش تباین, ناحیه بندی, استخراج ویژگی}
    Hamzeh Hassannia, Mehdi Chehel Amirani, Morteza Valizadeh *
    Mammography is the most common and effective screening method for breast cancer detection. In this paper a computer aided system for classification of benign and malignant tumors in digital mammogram is presented. First, a median filter is used for noise reduction, and then artifacts and pectoral muscle are removed to make the mammogram ready for segmentation. For segmentation of mammogram, a new contrast enhancement method is presented which employs the difference of two complement enhanced images and then a histogram based fuzzy C-means (HFCM) clustering are used for region-of-interest (ROI) extraction. Then, some geometrical and textural features are extracted, and finally linear support vector machine and decision tree classifier are used to classify the region of interest into benign and malignant classes. The proposed algorithm is validated on the MIAS and DDSM databases. The experimental results showed that the performance of the proposed method is promising compared to the other methods evaluated.
    Keywords: breast cancer, mammography, computer-aided diagnosis system, HFCM clustering, Geometrical Features}
  • فاطمه شیرازی، عصمت راشدی *، حسین نظام آبادی پور
    ناحیه بندی تومورهای سرطانی در تصاویر ماموگرافی مرحله ی مهمی در سامانه های تشخیص کمک کامپیوتری (CAD) بوده و یک مساله ی پر چالش است. در این مقاله از اطلاعات ویژگی محلی (LFI-CV) بافت تصویر در مدل کانتور فعال چن-وسه برای ناحیه بندی تومور استفاده شده است. در این مدل، ابتدا نگاشت ویژگی های بافت از تصویر استخراج می شود. سپس اطلاعات ویژگی محلی بافت تصویر به عنوان مقادیر ضرایب نیروی مدل چن-وسه در نظر گرفته می شوند. به کمک این ضرایب، انرژی مدل کانتور کمینه می شود و کانتور می تواند دقیق تر بر روی مرزهای تومور قرار گیرد. اطلاعات ویژگی های بافت مورد استفاده شامل ماتریس همرخداد سطح خاکستری (GLCM) و ویژگی های گابور می باشند. عملکرد روش ناحیه بندی پیشنهادی با استفاده از مدل های کانتور فعال چن -وسه مقایسه و ارزیابی شده است. ناحیه بندی در مدل کانتور فعال پیشنهادی با نگاشت های ویژگی کنتراست، آنتروپی و گابور در جهت و نسبت به مدل های کانتور چن- وسه دیگر در تکرار کمتر همگرا می شود. نتایج نشان می دهند که روش ناحیه بندی پیشنهادی برای ویژگی بافت گابور در جهت نتایج ناحیه بندی مطلوبی نسبت به روش های کانتور فعال چن-وسه دیگر از لحاظ زمان، تعداد تکرار، دقت و حساسیت ناحیه بندی دارد. تصاویر استفاده شده در این مطالعه از پایگاه داده جامعه ی تحلیل تصاویر ماموگرافی (MIAS) اخذ شده اند.
    کلید واژگان: سرطان سینه, تشخیص کمک کامپیوتری, ماموگرافی, ناحیه بندی تومور سرطانی, ویژگی بافت, کانتور فعال چن وسه با اطلاعات ویژگی محلی}
    Fatemeh Shirazi, Esmat Rashedi*, Hossein Nezamabadi, pour
    Cancerous tumor segmentation in mammogram images is an important stage and a challenging problemin computer aided detection (CAD) systems. In this paper, local feature information and Chan-Vese(LFI-CV)active contour modelare used for tumor segmentation. First, the texture feature mapsof mammograms are extracted. The utilized texture feature information includes gray level co-occurrence matrix (GLCM) and Gabor features. Using this information,the force values ofChan-Vese model are set and active contour model’s energy is minimized.As a result, the contour accurately segments the tumor. The results show that tumor segmentation using the proposed active contour modelandGabor texture feature at orientationis efficient in regard to the number of iterations, accuracy, and sensitivity. The mini-MIAS database is used for evaluation.
    Keywords: breast cancer, Computer aided detection, mammography, Cancerous tumor segmentation, Texture feature, Local feature information, Chan-Vese active contour model}
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال