numerical simulation
در نشریات گروه مکانیک-
در مقاله حاضر به شبیه سازی عددی رفتار ورق های فلزی در فرآیند شکل دهی سرعت بالا با قالب مادگی نمونه پرداخته شده است. همچنین از روش بارگذاری انفجاری مکرر زیرآب جهت اعمال بار به نمونه بهره گرفته شده به طوری که در بارگذاری اول و دوم به ترتیب از 4 و 8 گرم ماده منفجره استفاده شده است. در ادامه، از روش کوپل اویلری-لاگرانژی به همراه مدل ساختاری ویسکوپلاستیسیته جانسون-کوک جهت شبیه سازی عددی فرآیند بهره گرفته شد. مدل عددی با استفاده از آزمایش های انجام شده در مرجع [1] صحت سنجی شد. نشان داده شد که مدل عددی به خوبی گستره تغییرشکل و همچنین نحوه توزیع ضخامت در راستای طولی ورق را ایجاد می کند. با استفاده از مدل عددی صحت سنجی شده، کمیت هایی نظیر تغییرات سرعت تغییرشکل افقی و سرعت تغییرشکل عمودی، فشار، تنش و معیار آسیب در راستای شعاعی ورق بررسی شد. نتایج نشان داد که برخلاف نتایج به دست آمده برای شکل دهی انفجاری در مراجع پیشین، نمونه آزمایشی در بارگذاری اول و دوم پس از طی کردن ناحیه تغییرشکل گذرا دچار نوسانات یا اصطلاحا پدیده بازگشت فنری نمی شود و مقدار آن سریعا به میزان بیشینه (عمق قالب مادگی) نزدیک می گردد. همچنین، ورق پس از برخورد با قالب دچار تغییرشکل وارون یا کاهش میزان تغییرشکل نمی گردد. علت این مسئله را می توان در انتخاب مناسب میزان جرم خرج و همچنین استفاده از قالب مادگی جستجو کرد. لذا استفاده از ایده قالب مادگی بدون راهگاه برای شکل دهی فلزات تحت بارگذاری انفجاری مکرر زیرآب بسیار کارآمد است.کلید واژگان: شکل دهی با قالب، قالب مادگی، انفجار مکرر زیرآب، شبیه سازی عددی، روش کوپل اویلری-لاگرانژیIn this article, the numerical simulation of the behavior of metallic plates in the process of high-speed forming with female die is discussed. Also, the repeated underwater explosive loading was applied to the sample so that 4 and 8 gr of explosive charge were used in the 1st and 2nd blast, respectively. In the following, the Coupled Eulerian-Lagrangian method along with Johnson-Cook viscoplasticity model was used for the numerical simulation of the process. The numerical model was validated using the experiments conducted in Ref [1]. It was shown that the numerical model well shows the deformation profile as well as the thickness distribution in the longitudinal direction of the plate. Using the validated numerical model, quantities such as changes in horizontal deformation velocity and vertical deformation velocity, pressure, stress and JC damage criteria in the radial direction of the plate were investigated. The results showed that unlike the results obtained for explosive forming in the previous references, the test specimen in the 1st and 2nd blasts after passing through the transient deformation area does not undergo fluctuations or so-called springback phenomenon and its value quickly approaches the maximum amount (depth of the female die). Also, after hitting the die, the plate does not experience the reverse deformation or reduction of the deformation. The cause of this issue can be found in the appropriate selection of the amount of the charge mass of the and also the use of the female die. Therefore, it is very efficient to use the idea of a female die without central venting hole for forming metals under repeated underwater explosive loading.Keywords: Die Forming, Female Die, Repeated Underwater Explosion, Numerical Simulation, Coupled Eulerian-Lagrangian Method
-
در فرایند خم کاری ورق، بازگشت فنری در انتهای عملیات خم کاری باعث ایجاد خطا در هندسه قطعه کار می شود. یکی از روش های نوین برای کاهش میزان بازگشت فنری در عملیات خم کاری استفاده از ارتعاشات فراصوتی می باشد. در این پژوهش به منظور بررسی تاثیر ارتعاشات فراصوتی بر میزان بازگشت فنری، ابزار و متمرکزکننده فراصوتی برای عملیات خم کاری طراحی و ساخته شده است. ابتدا ابعاد متمرکزکننده با استفاده از روابط تحلیلی محاسبه شده و سپس به کمک نرم افزار آباکوس شبیه سازی عددی انجام شده و موقعیت گره ارتعاشی در آن تعیین گردیده است. درنهایت بسامد تشدید مجموعه ساخته شده توسط دستگاه تحلیلگر امپدانس اندازه گیری شده است. نمونه هایی از جنس آلومینیوم Al3105 و Al6061 و همچنین فولاد CK65 در شرایط با و بدون ارتعاشات فراصوتی خم کاری شده و میزان بازگشت فنری اندازه گیری شده است. نتایج آزمایش های تجربی نشان می دهد که استفاده از ارتعاشات فراصوتی اثر قابل ملاحظه ای در کاهش بازگشت فنری تا 58% در ورق های فولادی و تا 29% در ورق های آلومینیومی داشته و تاثیر بیشتر بر روی جنس ها با استحکام تسلیم بالاتر داشته است.
کلید واژگان: خم کاری ورق، بازگشت فنری، ارتعاشات فراصوتی، متمرکزکننده، شبیه سازی عددیIn the sheet metal bending process, springback at the end of the operation often leads to inaccuracies in the workpiece geometry. One innovative approach to reducing springback is the application of ultrasonic vibrations. In this research, an ultrasonic tool and concentrator for bending operation were designed and manufactured to investigate the effect of ultrasonic vibrations on springback. First, the concentrator dimensions were calculated using analytical relations, and numerical simulations were conducted using Abaqus software to determine the vibration node location. The resonant frequency of the constructed assembly was then measured using an impedance analyzer. Samples of aluminum Al3105 and Al6061, as well as CK65 steel, were bent both with and without ultrasonic vibrations, and the springback was measured. Experimental results demonstrated that ultrasonic vibrations reduce springback by up to 58% in steel sheets and 29% in aluminum sheets, with a more significant effect observed in materials with higher yield strength.
Keywords: Sheet Metal Bending, Springback, Ultrasonic Vibration, Concentrator, Numerical Simulation -
The collision of droplets with a liquid film is a common occurrence in daily generation . This study uses the CLSVOF approach to analyze a droplet's effect on a liquid film with various trapezoidal surface structures. It analyzes the spray morphology, velocity field, pressure distribution, and the characteristic arguments of the crown and cavity under different trapezoidal widths, heights, and hypotenuse lengths. The findings suggested that growing the height promotes spatter, the collision of droplet with liquid film forms mushroom-shaped velocity region and a zero-velocity region, while generating symmetrical vortices. The area above the trapezoid is identified as a high-pressure region, with its size increasing as the hypotenuse length and trapezoidal width rise and decreasing as the height increases. Three localized high-pressure regions are observed during the impact procedure, and the crown diameter grows with greater height. The bottom diameter of the cavity is influenced by the height, width, and hypotenuse length, with the hypotenuse length exerting the most significant effect. This study provides a theoretical foundation for applying droplet and liquid film collisions.Keywords: CLSVOF Method, Numerical Simulation, Droplet Impact On Liquid Film, Trapezoidal Surface, Crown
-
The design of contraction pipes for efficient fluid transport and spraying applications requires a deep understanding of fluid dynamics and resistance characteristics. This study utilizes the infinitesimal element method to analyze the fluid motion within the cross-section of a circular contraction pipe and confirms that the wall shear stress is a function of the total pressure gradient and pipe diameter, in accordance with Stokes’ formula. Numerical simulations are employed to investigate the velocity distribution and transverse pressure loss pattern across the cross-section of the pipe. By making reasonable assumptions and conducting data fitting, we present a semi-empirical model that predicts pressure loss and local loss coefficients in small contraction pipes. This model is shown to be simpler, more accurate, and broadly applicable, compared with existing models. This study provides practical guidance for the design of contraction pipes and enhancement of the accuracy of pressure loss calculations, which are crucial for optimizing fluid transport systems.Keywords: Contraction Pipe, Stokes' Formula, Numerical Simulation, Pressure Loss, Local Loss Coefficient
-
در سال های اخیر، فناوری چاپ سه بعدی به ویژه در نمونه سازی و ساخت قطعات با سرعت بالا و هزینه پایین، نقش مهمی ایفا کرده است. در این میان، روش لایه نشانی همجوش به عنوان یکی از اقتصادی ترین و پرکاربردترین روش های چاپ سه بعدی شناخته می شود. این روش از مواد مختلفی مانند پلی لاکتیک اسید و اکریلونیتریل بوتادین استایرن به عنوان ماده اولیه استفاده می کند و پارامترهایی نظیر دمای نازل، ضخامت لایه و سرعت چاپ، تاثیر مستقیمی بر کیفیت نهایی قطعه دارند. با توجه به تاثیر قابل توجه این پارامترها بر ویژگی هایی مانند استحکام کششی، مدول یانگ، استحکام خمشی و همچنین پایداری ابعادی، مطالعات تجربی و عددی متعددی برای بررسی این اثرات انجام شده اند. توسعه استفاده از این روش در کاربردهای صنعتی لزوم بررسی مطالعات انجام شده در این زمینه را برجسته می کند. هدف از انجام این پژوهش، مرور و تحلیل انتقادی این مطالعات از دو دیدگاه تجربی و عددی است تا مشخص شود کدام پارامترها نقش کلیدی تری در بهینه سازی خواص مکانیکی و کاهش هزینه ساخت دارند. نتایج نشان می دهند که برخی پارامترها از جمله ضخامت لایه و سرعت چاپ، تاثیر بیشتری بر ویژگی هایی مانند استحکام کششی و زمان/هزینه ساخت دارند. همچنین، یکی از نکات مهم در این روش، ایجاد توازن مناسب میان پارامترهای چاپ برای دستیابی به قطعاتی با خواص مکانیکی بهینه و هزینه تولید پایین است. یافته های این پژوهش با نتایج تحقیقات پیشین نیز همخوانی دارد.
کلید واژگان: چاپ سه بعدی، لایه نشانی همجوش، پارامترهای چاپ، تحلیل تجربی، شبیه سازی عددیIn recent years, 3D printing technology has played an important role, especially in prototyping and manufacturing parts with high speed and low cost. Among the various methods, fused deposition modeling (FDM) is known as one of the most economical and widely used. This method uses materials such as polylactic acid (PLA) and acrylonitrile butadiene styrene (ABS), and parameters like nozzle temperature, layer thickness, and print speed directly affect the final quality of the part. Due to their significant impact on properties such as tensile strength, Young's modulus, flexural strength, and dimensional stability, many experimental and numerical studies have been conducted. The growing industrial use of this method highlights the need to review and evaluate these studies. This research aims to review and critically analyze them from both experimental and numerical perspectives to identify the key parameters in optimizing mechanical properties and reducing costs. Results show that parameters such as layer thickness and print speed have a greater effect on tensile strength and production time/cost. Achieving a proper balance among printing parameters is essential to produce parts with optimal properties and low cost. The findings are also consistent with previous research.
Keywords: 3D Printing, Fused Deposition Modeling (FDM), Printing Parameters, Experimental Analysis, Numerical Simulation -
بیوگاز یک سوخت کم کالری است که از متان (%70-50) و کربن دی اکسید (%50-30)، با مقادیر کمیاب از سایر ذرات تشکیل شده است. احتراق سوخت های کم کالری اغلب شامل چالش های قابل توجهی در رابطه با پایداری شعله در بیشتر مشعل های معمولی است. احتراق محیط متخلخل یک روش موثر برای هدایت گرمای شعله به مخلوط ورودی است که می تواند سبب افزایش پایداری شعله شود. در بیشتر مطالعات، از بیوگاز در کار آزمایشگاهی یا شبیه سازی عددی با هندسه ساده استفاده شده است. در این مطالعه یک مشعل متخلخل دولایه ای با سوخت بیوگاز با هندسه برگرفته از یک کار آزمایشگاهی به صورت دوبعدی شبیه سازی عددی شده است و اثر هندسه مشعل که در تحقیقات قبل بررسی نشده بود، بر روی توزیع دمای جامد متخلخل و بازده تابشی مورد ارزیابی قرار گرفته است. نتایج نشان می دهد که کاهش مقدار کربن دی اکسید در ترکیب سوخت باعث افزایش دمای سطح مشعل می شود. همچنین تغییر در سطح مشترک لایه های متخلخل که به دو صورت مخروطی و کروی در دو حالت همگرا و واگرا شبیه سازی شده است، باعث تغییر در مکان تشکیل شعله، دمای بیشینه احتراق، دمای سطح مشعل و بازده تابشی مشعل می شود. بیشترین دمای احتراق و بیشترین دمای سطح مشعل برای هندسه مخروطی در حالت همگرا رخ می دهد. با افزایش 10 درصد کربن دی اکسید در ترکیب سوخت بیوگاز ورودی، بازده تابشی به طور متوسط 25 درصد کاهش می یابد. بازده تابشی مشعل واگرا در حالت هندسه مخروطی حدود 37 درصد و در حالت هندسه کروی حدود 25 درصد بیشتر از مشعل همگرا است. بیشترین بازده تابشی برای مشعل واگرا با کربن دی اکسید 30 درصد می باشد
کلید واژگان: شبیه سازی عددی، شعله ی پیش آمیخته، محیط متخلخل، بیوگاز، بازده تابشیBiogas is a low-calorie fuel comprises 50-70% methane and 30-50% carbon dioxide, with small amounts of other particles. Combustion of low-calorie fuels often involves significant challenges related to flame stability in most burners. Combustion of porous media is an effective method of directing flame heat to the input mixture, which can increase flame stability. In most studies, biogas has been used in experimentaly work or numerical simulation with simple geometry. In this paper, researchers simulate a two-layer porous burner with biogas fuel, based on an experimental design, in two dimensions. They evaluate the effect of the burner geometry, which was not investigated in previous researches, on the temperature distribution and the radiation efficiency. The results show that reducing the amount of carbon dioxide increases the burner surface temperature. Additionally, changes in the interface of the porous layers, simulated in two conical and spherical forms in two converging and diverging states, cause changes in the place of flame, the maximum combustion temperature, the temperature of the burner surface, and the radiation efficiency. The maximum combustion temperature and the maximum burner surface temperature occur for the conical geometry in convergent mode. Increasing 10% of carbon dioxide in the biogas fuel reduces the radiation efficiency by 25% on average. The radiation efficiency of the divergent burner is more than the convergent mode, about 37% for conical geometry and about 25% for spherical geometry. The maximum radiation efficiency is achieved when the burner is divergent and the amount of carbon dioxide is 30%.
Keywords: Numerical Simulation, Premixed Flame, Porous Medium, Biogas, Radiation Efficiency -
Boiling process in a heated tube is commonly used in different industries such as electronic equipment cooling, power plant, and air conditioning systems. Despite the significance of thoroughly and separately analyzing of heat transfer in different two-phase flow regimes encountered in boiling process, just a few simulations have been conducted. That is because of the lack of proper understanding of the many numerical methods that are now in use and their relative efficacy under various circumstances. This leads to dispersed effort and the application of disparate numerical methods, which incurs significant computational expenses. In this study, Eulerian-Eulerian approach was used to simulate the bubbly flow, which includes vapor bubbles in the rising water flow within a vertical tube. In order to identify the optimal numerical model and the extent of application of available numerical models in the simulation of bubbly flow, volume of fluid (VOF) and Eulerian boiling model of Rensselaer Polytechnic Institute (RPI) models were compared and evaluated. Results demonstrated that while the RPI boiling model results are more appropriate for estimating the heat transfer coefficient and wall temperature in this regime, the VOF model is more effective than the RPI model at simulating the regime, bubble formation and interface between phases. Moreover, RPI model was used to examine how changes in wall heat flux and inlet mass flow rate affected effective parameters. Results revealed that in the bubbly flow regime, a 100% increase in wall heat flux relative to its original value of 5000 W/m2, resulted in a 150% increase in the outlet vapor quality, a 75% rise in temperature difference between the wall and the saturation temperature, and a 20.8% increase in the mean wall heat transfer coefficient. Furthermore, by increasing the inlet mass flow rate, the nucleate boiling zone increases and the outlet vapor quality decreases.Keywords: Numerical Simulation, Eulerian-Eulerian Approach, Volume Of Fluid, RPI Boiling, Heat Transfer Mechanism
-
Investigating the aerodynamic characteristics of an ultrahigh-speed elevator between the car and counterweight during the staggering process is crucial for the development of drag reduction and noise abatement technologies. In this study, an actual operating ultrahigh-speed elevator is selected as the research object, and an unsteady flow numerical simulation model for three-dimensional, has been constructed using the method of dynamic mesh. The aerodynamic behaviours of the elevator at various interleaving operating speeds are analysed. The impacts of the counterweight on the flow velocity, pressure, lateral force, aerodynamic drag, and sound pressure level (SPL) of the car are investigated. The results show that a streamlined counterweight can stabilize airflow between the windward areas of the car and counterweight, reducing turbulence, the lateral lift, surface pressure gradients, and SPL, while also lessening the effects of reduced car-counterweight spacing. At a speed of 6 m/s, a bi-arc counterweight with a radius of 250 mm demonstrates superior performance in reducing lateral lift force and aerodynamic drag compared to a traditional rectangular counterweight, with reductions of 12.2% in lateral lift force and 9.3% in aerodynamic drag. Additionally, the simulation and test errors are within 10%, confirming the accuracy of the numerical calculation method.Keywords: Ultrahigh-Speed Elevator, Counterweight, Staggering Process, Aerodynamic Characteristics, Numerical Simulation
-
In this study, aiming at investigating the formation mechanism of pressure fluctuations of different frequencies in axial flow pumps, the characteristics of pressure fluctuation were determined using fast Fourier transform (FFT) on the basis of a numerical simulation of complex flow fields in the pump. The pressure and velocity modes corresponding to the primary pressure fluctuation frequency in the pump were decoupled and rebuilt using dynamic mode decomposition (DMD). The consequences showed that the primary pressure fluctuation frequencies in impeller were 11fn and 4fn and in diffuser were 4fn and 2fn, respectively, where fn is the shaft natural frequency. Moreover, the pressure fluctuation amplitude in diffuser was significantly larger than that in the impeller. DMD could identify the coherent structures of various frequency pressure fluctuations in the impeller and diffuser. In addition, the used method, which combines both FFT and DMD, revealed that the formation mechanisms of pressure fluctuations at different frequencies are different. In particular, the pressure fluctuation at 4fn in diffuser were caused by rotor–stator interaction (RSI) and flow separation near the suction surface (SS) of diffuser blades. Moreover, the pressure fluctuation at 2fn was caused by flow separation near the SS of diffuser blades and wake vortex shedding. In impeller, the pressure fluctuations at 11fn and 4fn resulted from RSI and flow separation at the leading edge (LE) of impeller blades, respectively.Keywords: Axial Flow Pump, Pressure Fluctuation, Dynamic Mode Decomposition, Numerical Simulation, Rotor–Stator Interaction
-
یکی از مهم ترین تکنیکهای غیرفعال در زمینه کاهش نیروی پسا، استفاده از سطوح ریزساختار می باشد. ساختارهای این سطوح که از مرتبه نانومتر تا چند صد میکرومتر می باشند می توانند به صورت تصادفی و یا به شکل منظم و کنترل شده، با هندسه و چیدمان مختلف بر روی سطح ایجاد شوند و با تاثیر بر جریان گذرنده، پسای تولیدی را دستخوش تغییر قرار دهند. این مقاله با هدف مطالعه فیزیک حاکم بر سطوح ریزساختار، به بررسی پارامترهای حاصل از عبور جریان هوا از روی آنها می پردازد که از جمله این پارامترها می توان به مولفه های پسا، پروفیل های سرعت و تنش برشی اشاره نمود. به این منظور از ریزساختارهای مثلثی با قاعده و ارتفاعی یکسان و برابر با 50، 100، 200، 400 و 800 میکرومتر استفاده شده است که به صورت عرضی در معرض جریانی با سرعت m/s 5 و m/s 25 قرار گرفته اند. این ریزساختارها بر روی صفحه ای به طول mm 60 ایجاد شده اند که برای انجام مقایسه دقیق تر، mm 10 از ابتدا و انتهای صفحه در مقایسه ها لحاظ نگردیده است. با توجه به تاکید برخی مقالات بر لغزش جریان از روی ریزساختارها، پروفیل های سرعت بر روی این سطوح بررسی شده است اما در نهایت تغییر در مقدار و جهت تنش برشی به عنوان مکانیزم اصلی کاهش پسای اصطکاکی تشریح گردیده و اثر ابعاد و سرعت جریان بر آن بررسی شده است. نتایج به دست آمده نشان می دهد که گردابه های محبوس در میان ساختارهای عرضی این سطوح می توانند با کاهش مقدار تنش برشی در اطراف قله ها و نیز تغییر جهت آن در دره ها منجر به کاهش پسای اصطکاکی گردند. از سوی دیگر ایجاد اختلاف فشار در داخل و اطراف ساختارها منجر به ایجاد پسای فشاری خواهد شد. برآیند این دو مولفه پسا که به ابعاد ریزساختارها و نیز سرعت جریان وابسته اند، نهایتا مقدار افزایش و یا کاهش پسای کل را تعیین خواهد کرد.
کلید واژگان: ریزساختار، کاهش پسا، جریان عرضی، تنش برشی، شبیه سازی عددیOne of the important passive techniques to reduce the drag force is the use of microstructured surfaces. The structures of these surfaces, which are from the order of nanometers to several hundred micrometers, can be created randomly or in a regular and controlled manner, with different geometries and configurations on the surface, and by affecting the fluid flow, they can change the amount of drag. With the aim of studying the physics governing microstructures, this article will investigate the parameters resulting from air flow passing them, which include drag components, velocity profiles and shear stress. For this purpose, triangular microstructures with the same base and height of 50, 100, 200, 400 and 800 µm have been used, which are transversely exposed to air flow with velocity of 5 m/s and 25 m/s. Due to the emphasis of some articles on the flow slipping over the microstructures, the velocity profiles on these surfaces have been investigated, but finally, the change in the amount and direction of the shear stress has been described as the main mechanism of viscous drag reduction. Then, the effect of the size of the structures and the velocity of the flow has been investigated. The obtained results show that the trapped vortices among the transverse structures can reduce the viscous drag by reducing the amount of shear stress around the peaks and reversing its direction in the valleys. On the other hand, creating a pressure gradient inside and around the structures will lead to creating pressure drag. The sum of these two drag components, which depend on the size of the microstructures and the flow velocity, will finally determine the increase or decrease of the total drag.
Keywords: Microstructure, Drag Reduction, Transverse Flow, Shear Stress, Numerical Simulation -
هدف اصلی طرح حاضر بررسی آزمایشگاهی و عددی برداشت انرژی آیروالاستیک از نوسانات ناشی از جریان عبوری از یک تیر مرکب پیزوالکتریک انعطاف پذیر نصب شده به صورت عمودی بر کف به عنوان پایه برای یک استوانه صلب با سطح مقطع های مربعی، دایره ای و ترکیبی به منزله یک پیکربندی ساده از توربین های بدون پره می باشد. در این آزمایش با استفاده از یک سیستم دمنده، جریان عبوری از روی توربین بادی بدون پره را تغییر داده و در نتیجه نوسانات آن، انرژی جنبشی حاصله توسط تکه پیزوالکتریک چسبانده شده در ریشه تیر الاستیک جذب شده است. با توجه به نتایج حاصله، حداکثر توان برداشت شده بدون بعد برای سطح مقطع1 در سرعت های حدود m/s 4/3 در حدود 8/1 و 50 برابر سطح مقطع3 و سطح مقطع5 بوده است. همچنین در این سرعت، سطح زیر نمودار توان برداشت شده بر حسب زمان برای سطح مقطع1 در حدود 6 برابر سطح مقطع3 بوده است. در این راستا، در سطح مقطع1 با افزایش سرعت از m/s 8/2 به m/s 4/3 مشاهده می شود که برداشت انرژی بدون بعد حدود 5/3 برابر رشد کرده، که این به معنای افزایش راندمان کاری سیستم در سرعت های بالاتر است.کلید واژگان: توربین بدون پره، شبیه سازی تجربی و عددی، ورق پیزوالکتریک، برداشت انرژی از FIVThe main objective of the present project is the experimental and numerical investigation of the aeroelastic energy harvesting from the fluctuations caused by the current passing through a flexible piezoelectric composite beam installed vertically on the floor as a base for a rigid cylinder with square, circular and mixed cross-sections as a simple configuration of Turbines without blades. In this experiment, by using a blower system, the flow passing over the bladeless wind turbine was changed and as a result of its fluctuations, the resulting kinetic energy was absorbed by the piezoelectric piece attached to the root of the elastic beam. According to the results, the maximum power extracted without dimension for cross-section 1 at speeds of about 3.4 m/s was about 1.8 and 50 times that of cross-section 3 and cross-section 5. Also, at this speed, the area under the power graph taken in terms of time for cross-section 1 was about 6 times that of cross-section 3. In this regard, in cross section 1, with an increase in speed from 2.8m/s to 3.4m/s, it can be seen that the dimensionless energy harvesting has grown by about 3.5 times, which means an increase in the working efficiency of the system at higher speeds.Keywords: Bladeless Turbine, Experimental, Numerical Simulation, Piezoelectric Sheet, Energy Harvesting From FIV
-
موتورهای توربوفن سنگین با مقادیر تراست بالا، از جایگاه ویژه ای در بین موتورهای هوایی برخوردار می باشند. در میان اجزای مختلف موتورهای توربین گاز، بخش توربین، به دلیل دما و دور کاری بالای اجزای آن، از حساسیت و اهمیت بالایی برخوردار است. در مطالعه حاضر، ابتدا بر اساس نتایج حاصل از طراحی سیکل، طراحی مفهومی توربین موتور توربوفن مدنظر با استفاده از نرم افزارها و الگوریتم های تعریف شده، انجام شده است. در ادامه شبیه سازی عددی جریان بر روی پره های طراحی شده صورت گرفته و عملکرد توربین طراحی شده بررسی شده است. نتایج طراحی مفهومی، به ویژه هندسه پره های توربین، تطابق خوبی با اطلاعات در دسترس موتور اصلی داشتند. نسبت فشار توربین های طراحی شده در بخش طراحی مفهومی و شبیه سازی عددی تنها 7/0 و 5/0درصد اختلاف داشتند. با این حال بازده توربین فشار بالا، به دلیل در نظر نگرفتن خنک کاری در شبیه سازی عددی، بین طراحی مفهومی و شبیه سازی عددی، در حدود 6/5 درصد اختلاف داشتند.
کلید واژگان: موتور توربین گاز، توربین، طراحی مفهومی، شبیه سازی عددیHeavy turbofan engines with high thrust values have a special place among air engines. Between the components of gas turbine engines, the turbine part is very sensitive and important due to the high temperature and long-distance operation of its components. In the present study, based on the results of the cycle design, the conceptual design of the turbine of the considered turbofan engine has been done by using the defined software and algorithms. The pressure ratio of the designed turbines in the conceptual design and numerical simulation section differed only by 0.7 and 0.5%. However, the efficiency of the high pressure turbine differed by about 5.6% between the conceptual design and the numerical simulation due to not considering the cooling in the numerical simulation.
Keywords: Gas Turbine Engine, Turbine, Conceptual Design, Numerical Simulation -
The layout of equipment and structures in underground utility tunnels has a significant impact on the safety of spaces. In this paper, experimental and simulation methods are combined to investigate the detonation characteristics of propane(C3H8)-air mixtures. By placing continuous obstacle plate at different positions within a pipeline, we examine the flame behavior, pressure, and flow field during the detonation process. The findings reveal that continuous obstacles create greater disturbances than single obstacles. When continuous obstacles are placed 500 mm and 800 mm from the ignition point, a secondary reignition phenomenon occurs; however, there is little difference in the time it takes for the flame front to reach the pipe’s outlet. Additionally, when continuous obstacles are positioned 200 mm and 800 mm from the ignition point, the detonation reaction weakens, with pressure peak reductions of 8.57% and 3.98% compared to the case with three single obstacles, and the maximum flame area decreases by 6.60% and 2.19%. In contrast, placing obstacles at 500 mm heightens the detonation reaction, resulting in a 2.92% increase in the pressure peak and a 19.87% increase in the maximum flame area compared to the case with three single obstacles.Keywords: Experimental Study, Explosion Behavior, Numerical Simulation, Obstacle Disturbance, Propane-Air Mixtures
-
The present study numerically examines the aerodynamic performance of an H-type vertical axis wind turbine (VAWT) utilizing airfoils with blunt trailing edges (BTE). A comprehensive series of numerical analysis was conducted to assess the impact of BTE airfoil design variables, including trailing-edge thickness and baseline configuration, on the power generation capabilities of the H-type VAWT. The results indicate that an increase in trailing edge thickness correlates with a higher power coefficient at low tip speed ratios (TSRs). When the trailing edge thickness is 3% of the airfoil’s chord length, the power coefficient of the vertical axis wind turbine (VAWT) at low tip speed ratios can increase by up to 33.2% compared to the original wind turbine. Additionally, the maximum power efficiency can be improved by 2.94%. Furthermore, the BTE airfoil design, which is achieved by rotating the airfoil’s upper and lower surfaces around the leading edge, can result in a more favorable BTE airfoil configuration with respect to its aerodynamic characteristics. The current study reveals that the BTE airfoils present significant potential for urban wind energy utilization, as the reduced operational velocities of BTE airfoils lead to lower noise emissions and heightened safety measures for VAWTs, rendering them an appropriate choice for integration into urban settings.Keywords: Blunt Trailing Edge Airfoil, Vertical Axis Wind Turbine, Power Coefficient, Numerical Simulation
-
This study proposes a numerical investigation for assessing the primary design parameters influencing the efficiency of a Darrieus type vertical axis wind turbine. The methodology consists in the numerical solution of the continuity and momentum equations utilizing the Unsteady Reynolds Averaged Navier-Stokes (URANS) approach. The turbulence closure model is the SST k-ω, and the Finite Volume Method is applied to solve the three-dimensional geometries. The findings confirm that variations in solidity and aspect ratio of twisted blade turbines, in comparison to straight blade configurations, exert a similar influence on the torque coefficient, surpassing the impact of blade torsion angle variations. Results corroborated previous findings of literature about the fluctuations in the torque coefficient (Cm) being smoothed in 55% when helical blades are used in comparison with straight configuration. However, the increase in blade torsion angle corresponded to a decrease in the torque coefficient, with maximum difference of 37% when solidity (σ) is σ = 0.75 and the ratio between height and radius of the turbine is H/R = 1.5. Results also demonstrated that the increase in the solidity from σ = 0.4 to 0.8 reduced the effect of the ratio H/R on the Cm. The increase of σ allowed a gain in Cm of nearly 60%. For constant σ and tip speed ratio (λ), the increase of H/R from 2.5 to 7.5 led to an increase of 79% in Cm. In general, results supplied a guideline on the influence of λ, twisted angle, σ, and H/R on the performance of helical Darrieus turbines.Keywords: Vertical Axis Wind Turbine, Twisted Blade Darrieus, Design, Aerodynamics, Numerical Simulation, Finite Volume Method
-
Surge phenomenon is investigated for an axial compressor through a set of experiments. In addition, the full-annulus numerical simulation method is used to numerically simulate the surge phenomenon and analyze the flow field details during the surge process. The results identified four distinct stages in the surge: forward deceleration, reverse flow, forward recovery, and chamber recovery. The forward recovery stage, the flow field experiences stall with the occurrence of unevenly distributed stall regions. In contrast, the chamber recovery stage at the same flow rate exhibits a more uniform flow field without stall regions. These findings highlight the capability of the capability of the full-annulus calculation method to provide insights into the flow field details during the surge process. The information can serve as a reference for the development of accurate surge models and the study of the influence of surge on the internal flow of the compressor passage.Keywords: Axial Compressor, Surge Process, Flow Field Details, Full-Annulus Calculation, Numerical Simulation
-
Surface roughness of ski suits can have a significant effect on the aerodynamic performance of ski jumping athletes. Herein, several typical surface roughness configurations are examined through numerical simulations. Force parameters such as lift, drag and pitching moment are analyzed to evaluate the aerodynamic performance of varying surface roughness. Furthermore, the athlete model is segmented into distinct body parts to conduct a comprehensive analysis of the aerodynamic contributions from each individual segment. Generally, the surface roughness has a significant effect on the aerodynamic performance during the flight phase. Specifically, the lift-drag ratio of the entire multibody system shows a trend of increasing first and then decreasing. Moreover, the trunk of the athlete plays a predominant role in generating aerodynamic forces during the flight phase. Therefore, when designing high-performance ski jumping suits, prioritizing the surface roughness of this part can be considered first. Flow structures are also presented to analyze the impact of these various surface roughness conditions. Notably, flow suppression near the back region of the athlete body can significantly reduce the resistance force in the horizontal direction. Consequently, this revelation of the impact mechanism of ski suit surface roughness on the aerodynamic performance of the multibody system can guide the design of appropriate ski suits, and will also assist athletes in achieving superior aerodynamic performance during flight.Keywords: Ski-Suits, Surface Roughness, Aerodynamic Performance, Numerical Simulation
-
This study investigated the effects of solid particles at varying concentrations on hydrodynamic cavitation within a nozzle in a solid particle-pure water-hydrodynamic cavitation flow system. Concentrations ranged from 5% to 10%, and mean diameters varied from 0.0015 mm to 0.040 mm. The Zwart-Gerber-Belamri cavitation model, originally developed for pure water-hydrodynamic cavitation flow, was adapted for the solid particle-pure water-hydrodynamic cavitation flow scenario. A novel algorithm integrating solid, liquid, and vapor phases was developed to facilitate numerical simulations of this flow. Comparisons were made between the vapor contents in solid particle-pure water-hydrodynamic cavitation flow under different concentrations and those in pure water-hydrodynamic cavitation flow to establish variation patterns. Solid particles consistently promoted cavitation evolution across all concentration conditions. However, the range of mean diameter promoting cavitation decreased with increasing concentration. The study analyzed variations in solid particle properties, flow fields, and the forces acting on solid particles to elucidate the underlying mechanisms. Solid particles induced a greater number of cavitation nuclei. In the solid particle-pure water-hydrodynamic cavitation flow, the maximum and minimum slip velocities, as well as the maximum and minimum turbulent kinetic energies, were higher than those in pure water-hydrodynamic cavitation flow, establishing these factors as primary influencers. Conversely, the Saffman lift force was relatively small, rendering its effects as secondary. The combined effects of these factors contributed to the distinctive evolution of hydrodynamic cavitation within the nozzle.Keywords: Solid Particle-Pure Water-Hydrodynamic Cavitation Flow, Solid Particle Concentration, Solid Particle Mean Diameter, Nozzle, Numerical Simulation
-
The noise hazard posed by cavitation in pump-jet propellers is a significant concern during oceanic operations. This study evaluates the cavitation performance and associated noise characteristics of pump-jet propellers in underwater conditions, further examining the interplay between cavitation phenomena and noise radiation. Cavitation performance across varying advance coefficients was scrutinized using the k-ω SST turbulence model alongside the Zwart cavitation model. Employing Lighthill’s analogy method and bubble radiation theory, analyses of flow-induced noise and noise due to cavitation were conducted. The findings indicate an intensification of cavitation within the pump-jet with increased rotational speed and a reduction in cavitation number, aligning pressure and velocity distributions with observed cavitation patterns. Cavitation markedly elevates flow-induced noise levels, with noise under cavitation conditions found to be around 50 dB higher compared to non-cavitation conditions. Considering cavitation bubble radiation noise, the volumetric pulsations and their amplitudes in the pump-jet enlarge as the bubbles progress through initial growth to maturity. Predominantly, the noise levels from bubble volume pulsations occur within low to medium frequency ranges.Keywords: Pump-Jet Propeller, Numerical Simulation, Acoustic Computing, Cavitation, Noise
-
In this study, a numerical simulation of the static leakage of a subway vehicle was conducted, based on the turbulence model of k-ω Shear Stress Transport (SST). The impact of the leak hole thickness and of the slenderness ratio, on the airtightness of the vehicle is analyzed with a single leak hole, as is the influence of the number, location, slenderness ratio, and area ratio of leak holes, on the airtightness of a train with multiple leak holes. The relative errors of the numerical simulation results are smallest when the leak hole slenderness ratio is 1:16. The relative errors in cases of a single leak hole, and of multiple leak holes are 4.93% and 3.68%, respectively. The pressure relief time first decreases, and then increases as the thickness of the leak hole increases, and is the smallest when the leak is 200 mm in thickness. Keeping the total area of leak holes unchanged, the location and number of leak holes have little impact on the pressure relief time. When door and window leak holes have different thicknesses, changing the area ratio of the door and window leak holes increases the pressure relief time, by a maximum of 1.23 seconds.Keywords: Subway Vehicle, Static Airtightness, Leakage Hole, Leak Characteristics, Numerical Simulation
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.