جستجوی مقالات مرتبط با کلیدواژه « Diesel Engine » در نشریات گروه « مکانیک »
تکرار جستجوی کلیدواژه « Diesel Engine » در نشریات گروه « فنی و مهندسی »-
در این پژوهش عوامل موثر بر روی شکست لاینر موتور توربوشارژ (16215T) لکوموتیو بررسی شده است. با تهیه سه نمونه لاینر از تولیدکننده های مختلف و ارسال به آزمایشگاه، خواص مکانیکی اعم از سختی و استحکام کششی و همچنین درصد عناصر سازنده و تفاوت مقادیر آن ها در نمونه های مختلف مورد مطالعه قرار گرفت. در ادامه تاثیر درصد وزنی عناصر مختلف بر روی خواص مکانیکی چدن خاکستری تحقیق شد. با تهیه تصاویر میکروسکوپی در بزرگنمایی 100x، ساختار زمینه رویت گردید. همچنین شکل و آرایش گرافیت های ورقه ای در نمونه های مختلف با یکدیگر مقایسه و تاثیر آن بر روی شکست و رشد ترک در لاینر بررسی گردید. سه نمونه لاینر، تعیین دسته بندی و نوع ماده سازنده، شده اند. با رویت فسفید یوتکتیک در ریز ساختار دو نمونه A (لاینر کاملا شکسته شده) و B (لاینر ترک خورده) و همچنین درصد بالای فسفر، عیوب ساختاری و وجود نابجایی ها در دانه بندی سبب شکست این نمونه ها شده است. همچنین توزیع غیر یکنواخت گرافیت ورقه ای در این دو نمونه، طول و ضخامت کم آن ها سبب افزایش استحکام، کاهش جذب و تعدیل انرژی شده است.
کلید واژگان: لاینر, موتور دیزل, چدن خاکستری, گرافیت ورقه ای, رشد ترک, 16rk215T}In this research, the effective factors on the liner failure of the turbocharged engine (16rk215T) of the locomotive have been investigated. By preparing three liner samples from different manufacturers and sending them to the laboratory, the mechanical properties, including hardness and tensile strength, as well as the percentage of constituent elements and the difference in their values in different samples, were studied. Next, the effect of the weight percentage of different elements on the mechanical properties of gray cast iron was investigated. By preparing microscopic images at 100x magnification, the background structure was seen. Also, the shape and arrangement of lamellar-graphite in different samples were compared with each other and it effect on the fracture and crack growth in the liner was investigated. Three samples of liner, grade and material have been determined. With the appearance of eutectic phosphide in the structures of two samples A (broken liner) and B (liner with crack), as well as the high percentage of phosphorus, structural defects and the presence of dislocations in the grain cause the failure of these samples. Also, non-uniform production of lamellar-graphite in these two samples, its short length and thickness increases strength, reduces absorption and reduces energy.
Keywords: Liner, diesel engine, Gray cast iron, Lamellar graphite, Crack growth, 16rk215T} -
انتشارات مضر احتراق سوخت های فسیلی محققان را تشویق می کند تا سوخت های جایگزین مانند بیودیزل را مطالعه کنند. البته آنالیز آلایندگی مشکل اصلی برای انتخاب سوخت مناسب است. بنابراین، در این مطالعه، یک موتور دیزل دوگانه سوز برای رویکردهای ارزیابی عملکرد و چرخه حیات محیطی مورد بررسی قرار گرفته است. علاوه بر این، مخلوطی شامل بیودیزل مشتق از روغن آفتابگردان با افزودنی بیواتانول 3، 5 درصد و 7 درصد و بیوگاز خالص در کسری 50 تا 80 درصد به عنوان سوخت در فرآیند احتراق تهیه می شود. بر این اساس، در این تحقیق هشت نمونه سوخت تهیه و به همراه سوخت دیزل (به عنوان سوخت شاهد) مورد مطالعه قرار گرفته است. تمام مراحل از تولید نهاده تا احتراق نمونه های سوخت شامل استخراج روغن از دانه های آفتابگردان، تولید بیودیزل و بیواتانول و تولید گازطبیعی مشتق شده از بیوگاز خالص در ارزیابی چرخه حیات به طور جامع، به عنوان یک موضوع جذاب و ابتکاری در نظر گرفته می شود. این نمونه ها در یک موتور دوگانه سوز تحت احتراق قرار گرفتند. نتایج نشان می دهد که نمونه سوخت B5 و 3 درصد از افزودنی بیواتانول در عملکرد موتور و آلایندگی اگزوز بهترین ها هستند. علاوه بر این، شرایط بهتری هم در عملکرد موتور و هم در آلاینده های اگزوز در حداقل نرخ کسر گازطبیعی (50٪) به دست آمد. ارزیابی چرخه حیات جامع مزرعه تا احتراق نشان می دهد که ترکیب سازگار با محیط زیست با شاخص های عملکرد قابل قبول متعلق به B5E7 با 50% کسر گازطبیعی در بار کامل موتور است.کلید واژگان: بیواتانول, بیودیزل, بیوگاز, موتور دیزل, ارزیابی چرخه حیات}The investigation of alternative fuels, such as biodiesel, have been prompted by the detrimental emissions resulting from the combustion of fossil fuels. Undoubtedly, the primary concern in fuel selection lies in the examination of emissions. Hence, the present study aims to examine the performance and environmental life cycle assessment methodologies of a dual fuel diesel engine. Furthermore, a fuel blend is made by combining biodiesel sourced from sunflower oil with varying concentrations of bioethanol (3%, 5%, and 7%) and pure biogas, with a percentage ranging from 50% to 80%. This fuel blend is intended for use in the combustion process. In this study, a total of eight fuel samples were meticulously produced and subsequently examined, alongside diesel fuel which served as the control fuel. The entire life cycle evaluation encompasses several stages, starting with the manufacturing of inputs to the combustion of fuel samples. This includes the extraction of oil from sunflower seeds, the production of biodiesel and bioethanol, as well as the generation of natural gas produced from pure biogas. These processes are regarded as captivating and pioneering topics within the field. The provided samples underwent combustion within a dual fuel engine. The findings indicate that the B5 fuel sample, when combined with a 3% bioethanol additive, demonstrates superior engine performance and reduced exhaust emissions. Furthermore, enhanced conditions were achieved in terms of engine performance and exhaust emissions when operating at the lowest rate of natural gas fractionation, which was 50%. The findings of a thorough life cycle evaluation, which examines the entire process from farm to combustion, indicate that the blend B5E7, consisting of 50% natural gas portion at maximum engine load, demonstrates both environmental friendliness and appropriate performance characteristics.Keywords: Life Cycle Assessment, Bioethanol, Biodiesel, Biogas, Diesel Engine}
-
The aim of this study was to accurately quantify the emission characteristics of pollutants at different altitudes. We used an intake and exhaust altitude simulation system that could simulate the intake and exhaust pressures of a national sixth vehicle diesel engine at different altitudes. Experimental research was conducted on the World Harmonized Transient Cycle (WHTC) and World Harmonized Steady State Cycle (WHSC) of the diesel engine. The results showed that carbon monoxide (CO) emissions increased with the altitude at full load, but their rates were significantly reduced at low speed (800 rpm), increasing by 0.0084–0.665 ppm/m. Hydrocarbon (HC) emissions showed an initial decreasing and then increasing trend, with a rise of up to 30%. Nitrogen oxides (NOx) showed a linear decreasing trend, especially at low speed. With the increase in altitude, the cycle work of the diesel engine decreased in a non-linear manner, and the decrease became more pronounced above 3000 m. The raw emission results of the WHTC and WHSC tests also revealed that CO increased exponentially, NOx decreased slightly and then increased rapidly, HC increased linearly, and the emissions of all pollutants deteriorated significantly above 3000 m. The exhaust emission results of the WHTC and WHSC tests showed that the CO emission showed an initial decreasing and then increasing trend with the elevation of the altitude, approximately 15 ± 5 mg/kWh. HC emissions showed an increasing trend, with HC emissions of 3 – 6 mg/kWh for the WHTC and 1 – 2 mg/kWh for the WHSC. NOx emissions did not follow any obvious rule, while the particulate matter (PM) tended to increase and then decrease with the elevation of the altitude. In relation to the current emission standards, the limit value margin for CO and HC exhaust emissions is greater than 95% and the limit value margin for PM emissions is greater than 88% at an altitude of 4000 m. The NOx emission limit is greater than 87% (within 3000 m), but there is a risk of exceeding the limit above 3000 m. The second sampling data from the WHTC and WHSC showed that the raw emissions of the engine were higher in the high-altitude area than in the low-altitude area, but the change law of the exhaust emissions was not obvious, and the levels of both emissions were low.Keywords: Altitude, Heavy-Duty Vehicle, Diesel engine, Emission characteristics, Experimental}
-
موتورهای دیزل به عنوان اصلی ترین منابع تولید انرژی و مصرف سوخت دیزل به شمار می آیند. به کارگیری از سوخت بیودیزل به عنوان بخشی از سوخت مصرفی موتورهای دیزل می تواند تاثیر مثبتی در کاهش به کارگیری از منابع فسیلی و انتشار آلاینده ها داشته باشد. به کارگیری از سوخت بیودیزل در کنار مزایای آن، دارای معایبی نظیر افزایش انتشار اکسیدهای نیتروژن می باشد که به عنوان یک گاز سمی تلقی می شود. محققان بسیاری افزودنی های متفاوتی در راستای پوشش بخشی از معایب سوخت بیودیزل ارایه داده اند. در این مقاله دو نوع افزودنی اکسیژن دار شامل دی متیل کربنات و ان بوتانول به صورت تلفیقی با مقادیر کم در سوخت های B2 (2 درصد بیودیزل و 98 درصد دیزل) و B5 (5 درصد بیودیزل و 95 درصد دیزل) مخلوط شدند. به کارگیری مقادیر کم این افزودنی ها می تواند موجب کاهش هزینه تولید سوخت شود. بر اساس نتایج به دست آمده، نمونه سوخت های B2D10N10 و B2D10N0 توانستند توان ترمزی موتور دیزل را به ترتیب حدود 12 و 10 درصد نسبت به سوخت B2 افزایش دهند. از طرفی استفاده از نمونه سوخت های حاوی افزودنی های ترکیبی دی متیل کربنات و ان بوتانول در سوخت B2 به طور متوسط حدود 18 درصد مصرف سوخت ویژه ترمزی را نسبت به سوخت دیزل و حدود 32 درصد نسبت به سوخت B2 کاهش داد. استفاده از افزودنی های ترکیبی دی متیل کربنات و ان بوتانول میزان بازده حرارتی را به طور متوسط حدود 15 الی 30 درصد نسبت به سوخت های دیزل، B2 و B5 افزایش داد. افزودن دی متیل کربنات و ان بوتانول به صورت ترکیبی در مقادیر کم موجب کاهش انتشار مونوکسیدکربن به میزان قابل توجه شد. بالاترین میزان انتشار دی اکسیدکربن در سوخت های حاوی ترکیبات ترکیبی دی متیل کربنات، ان بوتانول و B5 اتفاق می افتد که حدود 10 الی 15 درصد بالاتر از نمونه شاهد بود. طی فرایند بهینه سازی، نمونه سوخت B2D30N20 به عنوان فرمولاسیون بهینه در تلفیق سوخت دیزل، بیودیزل، دی متیل کربنات و ان بوتانول انتخاب شد.کلید واژگان: بیودیزل, موتور دیزل, سوخت دیزل, دی متیل کربنات, ان-بوتانول}Diesel engines are considered the main sources of energy production and diesel fuel consumption. The use of biodiesel fuel as a part of diesel engines can have a positive effect on reducing the use of fossil resources and the emission of pollutants. Using biodiesel fuel, along with its advantages, has disadvantages such as increasing the emission of nitrogen oxides, which is considered a toxic gas. Many researchers have proposed different additives to cover some of the disadvantages of biodiesel fuel. In this article, two types of oxygen additives, including dimethyl carbonate and n-butanol, were combined with small amounts in B2 (2% biodiesel and 98% diesel) and B5 (5% biodiesel and 95% diesel) fuels. Using small amounts of these additives can reduce the cost of fuel production. Based on the obtained results, B2D10N10 and B2D10N0 fuel samples were able to increase the braking power of the diesel engine by about 12 and 10%, respectively, compared to B2 fuel. On the other hand, the use of fuel samples containing dimethyl carbonate and n-butanol additives in B2 fuel reduced the special brake fuel consumption by about 18% compared to diesel fuel and about 32% Diesel engines are considered the main sources of energy production and diesel fuel consumption. The use of biodiesel fuel as a part of diesel engines can have a positive effect on reducing the use of fossil resources and the emission of pollutants. Using biodiesel fuel, along with its advantages, has disadvantages such as increasing the emission of nitrogen oxides, which is considered a toxic gas. Many researchers have proposed different additives to cover some of the disadvantages of biodiesel fuel. In this article, two types of oxygen additives, including dimethyl carbonate and n-butanol, were combined with small amounts in B2 (2% biodiesel and 98% diesel) and B5 (5% biodiesel and 95% diesel) fuels. Using small amounts of these additives can reduce the cost of fuel production. Based on the obtained results, B2D10N10 and B2D10N0 fuel samples were able to increase the braking power of the diesel engine by about 12 and 10%, respectively, compared to B2 fuel. On the other hand, the use of fuel samples containing dimethyl carbonate and n-butanol additives in B2 fuel reduced the special brake fuel consumption by about 18% compared to diesel fuel and about 32% compared to B2 fuel. Using the combined additives of dimethyl carbonate and n-butanol increased the thermal efficiency by an average of 15-30% compared to diesel, B2, and B5 fuels. The addition of dimethyl carbonate and n-butanol in combination in small amounts significantly reduced carbon monoxide emissions. The highest amount of carbon dioxide emission occurs in fuels containing the combined compounds of dimethyl carbonate, n-butanol, and B5, which was about 10-15% higher than the control sample. During the optimization process, the B2D3N2 fuel sample was selected as the optimal formulation in combining diesel fuel, biodiesel, dimethyl carbonate, and n-butanol.Keywords: Biodiesel, Diesel engine, Diesel fuel, Dimethyl carbonate, n-butanol}
-
For diesel engines equipped with a combined spiral/tangential inlet, the main object of the valve structure and valve lift dissimilitude strategies is the valve, the changes of both will alter the motion state of the in-cylinder airflow, which has an important impact on the formation and combustion of the mixture. In order to investigate the flow performance of valve structure and valve lift dissimilitude, this paper used computational fluid dynamics (CFD) numerical simulation and multi-parameter regression methods to optimize the dual intake valve structure and obtained three valve structures with better intake performance first. Then, the optimized intake valve structure models were combined with the valve lift dissimilitude schemes to conduct steady-flow tests for the intake port. Through the reasonable combining of the two, the intake performance of the original engine was further improved. The results show that the valve structure has a relatively small influence on the intake mass, while it has a greater effect on the formation of the swirl in the cylinder, increasing the swirl ratio by 8.0%. The optimized valve structure model was combined with the valve lift dissimilitude scheme. It was found that the valve structure with optimal intake mass combined with the dissimilitude scheme of the largest valve lift of the spiral inlet could increase the flow coefficient by a maximum of 1.9%. The valve structure of the optimal swirl ratio combined with the dissimilitude scheme of the largest valve lift of the tangential inlet could increase the swirl ratio by a maximum of 9.7%. This study can guide diesel engines with combined intakes to increase the intake mass and improve the intake performance.Keywords: Diesel engine, Combined inlet, Valve structural optimization, Valve lift dissimilitude, Intake performance}
-
نوسانات فشار در هنگام پاشش سوخت یکی از عواملی است که روی عملکرد موتور دیزل تاثیر منفی می گذارد. این نوسان ها به دلیل باز و بسته شدن سریع افشانه ها و ایجاد امواج فشاری در ریل سوخت به وجود می آیند. یکی از روش هایی که می توان این نوسانات فشار را کنترل کرد تغییر در طراحی افشانه و استفاده از یک انباره در ساختمان آن است. این پژوهش به منظور بررسی اثر افزودن انباره بر روی افشانه برای کنترل موج های فشاری در سامانه سوخت رسانی ریل مشترک موتورهای دیزل انجام می شود. همان طور که نتایج شبیه سازی ها نشان می دهد در فشار پاشش 1000 بار و زمان تحریک افشانه 0.8 میلی ثانیه در حالت بدون انباره بیشینه نوسان فشار در مسیر سوخت رسانی عدد 1046 بار وکمینه فشار 891 بار می باشد که با اضافه کردن انباره با حجم 4 سانتی متر مکعب کاهش بیشترین فشار ادامه یافته و به عدد 1023 بار رسیده است و کمترین فشار مسیر سوخت رسانی با افزایش 17 بار، 943 بار می باشد. که این تغییرات در بقیه فشارها و زمان های پاشش نیز قابل ملاحظه می باشد در نتیجه بهترین انباره که بیشترین تاثیرگذاری در کاهش نوسانات فشار را دارا می باشد انباره با حجم 4 سانتی متر مکعب می باشد.کلید واژگان: انباره, ریل مشترک, فشار سوخت, موتور دیزل, نوسانات فشار}Pressure fluctuations during fuel injection are one of the factors that negative effect on performance of diesel engine. These fluctuations are caused by the rapid opening and closing of the nozzles and the creation of pressure waves in the fuel rail. One way to control these pressure fluctuations is to change the injector design and use an accumulator in the injector. This study is performed to investigate the effect of adding accumulator on the injector to control pressure waves in the common rail fuel injection system of diesel engines. As the simulation results show, at injection pressure of 1000 bar and energizing time of 0.8 milliseconds, in the case of no accumulator, the maximum pressure fluctuation in the fuel rail is 1046 bar and the minimum pressure is 891 bar. By adding an accumulator with a volume of 4 cm3, the maximum pressure continued to decrease and reached 1023 bar, and the minimum pressure of the fuel rail increased by 17 bar, 943 bar. These changes are also noticeable in other pressures and energizing times, so the best accumulator that has the most impact on reducing pressure fluctuations is the accumulator with a volume of 4 cm3.Keywords: accumulator, Common rail, Diesel engine, Fuel Pressure, Pressure fluctuations}
-
یکی از استراتژی های نوین به منظور بهبود عملکرد و آلایندگی موتورهای دیزلی، استفاده از سوخت های جایگزین و نیز افزودنی های مناسب نظیز نانوذرات به سوخت دیزل می باشد. نانوسوخت ها نقش بسزایی در بهینه کردن فرآیند های احتراق و در نتیجه مصرف سوخت و آلاینده های خروجی دارند. در این مقاله تاثیر افزودن نانوذرات مختلف (نانوذرات اکسیدهای سریم، آلومنیوم و مس) در غلظت 100 پی پی ام، به سوخت دیزل، بر روی فرآیند احتراق و آلایندگی موتورهای دیزلی با استفاده از کد دینامیک سیالات محاسباتی فایر، بررسی شده است. برای ارزیابی نتایج حاصل از شبیه سازی، تغییرات فشار داخل سیلندر، مقدار بیشینه فشار تجربی و زاویه رخداد آن با مقدار حاصل از حل عددی مقایسه شده است. در کنار این پارامتر، مقادیر تجربی آلاینده های اکسیدهای نیتروژن، دوده، توان و همچنین مصرف سوخت ویژه ترمزی با مقادیر عددی ارزیابی گردید. نتایج نشان می دهد که نانوذرات، میزان حرارت منتقل شده به سوخت را افزایش داده و با تسریع احتراق، سبب کاهش زمان تاخیر در اشتعال می گردند. همچنین اختلاط بهتر مخلوط سوخت و هوا، در نانوذرات اکسید سریم نسبت به سایر نانوذرات، مکانسیم اشتعالی سوخت را بهبود بخشیده که منجر به احتراق کامل تر و افزایش 5/14 درصدی توان و نیز کاهش 6 درصدی مصرف سوخت و 34 درصدی آلاینده دوده در مقایسه با سوخت دیزل خالص گردید. تنها نکته منفی آن، افزایش 31 درصدی آلاینده اکسید نیتروژن می باشد که می توان آن را با مبدل های کاتالیزوری کاهش داد
کلید واژگان: نانوذرات, موتور دیزلی, آلایندگی, اسپری سوخت, دینامیک سیالحاسباتی}One of the novel strategies to improve the performance and emissions of diesel engines is the use of alternative fuels as well as suitable additives such as nanoparticles to diesel fuel. Nanofuels play an important role in the optimization of combustion processes, fuel consumption, and emissions. In this paper, the effect of adding different nanoparticles (cerium, aluminum, and copper oxide nanoparticles) at a concentration of 100 particles per million (ppm) to diesel fuel on the combustion process and emissions of diesel engines has been investigated by using FIRE computational fluid dynamics code. For validation, the in-cylinder pressure variations, the experimental peak pressure, and the angle of occurrence are compared with the numerical results. In addition, the experimental data of NOx, soot, power as well as brake specific fuel consumption were evaluated with numerical values. The results show that nanoparticles increase the amount of heat transfer to the fuel and decrease the ignition delay. Also, better mixing of fuel and air in cerium oxide nanoparticles compared to other nanoparticles improved the fuel ignition mechanism, which leads to more complete combustion and a 14.5% increase in power and also a 6% and 34% reduction in fuel consumption and soot compared to diesel fuel respectively. The only downside is the 31% increase in NOx, which can be reduced by catalytic converters.
Keywords: Nanoparticles, Diesel Engine, Emissions, Fuel Spray, CFD} -
در این مطالعه به بررسی آزمایشگاهی ترکیب حاصل از امولسیون های بیودیزل -دیزل، اتانول-دیزل و اتانول-بیودیزل-دیزل بر روی عملکرد و آلایندگی یک موتور دیزلی پاشش مستقیم پرداخته شده است. اتانول با خلوص بالا در سه سطح 2، 4 و6 درصد حجمی و بیودیزل تهیه شده از روغن پسماند آشپزخانه ای در چهار سطح 5، 10، 15 و20 درصد حجمی با سوخت دیزل مخلوط گردید و 11 نمونه سوخت تهیه شد که به صورت اختصاری با BxEy نمایش داده می شود. x و y به ترتیب نشان دهنده درصد حجمی بیودیزل و اتانول در مخلوط های آماده شده، می باشد. آزمایشات در حالت بار کامل و با تغییر سرعت از 800 تا 1800 و با گام 200 دور بر دقیقه انجام شد. نتایج نشان داد که دیزل خالص دارای کمترین میزان مصرف سوخت ویژه ترمزی در تمامی سرعت های مورد آزمایش در مقایسه با سایر نمونه های تهیه شده می باشد. استفاده از ترکیب سوخت B15E6 میزان انتشار آلاینده مونوکسید کربن را تا 40 درصد در مقایسه با دیزل خالص بهبود بخشید. همچنین استفاده از این ترکیب میزان انتشار گاز دی اکسید کربن و هیدروکربن نسوخته را به ترتیب 27 و 55 درصد نسبت به دیزل خالص کاهش داد.کلید واژگان: بیودیزل, اتانول, موتور دیزل, آلایندگی}In this study, the combination of biodiesel-diesel, ethanol-diesel, and ethanol-biodiesel-diesel emulsion blends on performance and emissions of a direct injection diesel engine was investigated. High purity ethanol in three levels of 2, 4 and, 6 by volume percent and biodiesel prepared from waste cooking oil in four levels of 5, 10, 15 and 20 by volume percent were mixed with pure diesel. Thus, 11 fuel samples were prepared which were shown with BxEy, that x and y represent the volume percent of biodiesel and ethanol in the prepared mixtures, respectively. The experiments were performed at full load with the change in engine speed from 800 to 1800 rpm, with the interval 200 rpm. The results showed that pure diesel has the lowest specific fuel consumption at all of the speeds compared to other prepared mixtures. Using of B15E6 blend, reduced the emission of carbon monoxide by 40% compared to pure diesel. This mixture also, reduced the emissions of carbon dioxide and hydrocarbon by 27 and 55% compared to pure diesel, respectively.Keywords: Biodiesel, Ethanol, Diesel engine, Emissios}
-
The intake port of a CA4DD diesel engine was investigated by a computational fluid dynamics (CFD) numerical simulation to enhance the intake swirl and improve the flow characteristics in the engine. The uniform design method was applied to study the influence of guide vanes with different parameters on the intake process at various valve lifts. Nine guide vane models were established and compared to the base model using CATIA™ 3D CAD software. Numerical simulations were conduct with Xflow software based on the lattice Boltzmann method (LBM). The distributions of the streamlines, vorticity, velocity and turbulent intensity in each cylinder were simulated and analyzed. The results show that the influence of the guide vanes on the swirl ratio was greater than 37%, and the flow coefficient was less than 5% compared to the base model. Scheme 5, H7.5-L50-θ20 (guide vane height of 7.5 mm, length of 50 mm and angle of 20°), provided good performance. The flow characteristics of the optimal guide vane model were verified through a steady flow test. When the guide vane aspect ratio and angle were within the ranges of 3.5-6.9 and 12.2°-20.2°, respectively, the swirl ratio had the best effect at maximum valve lift. This study provides a theoretical basis for improving the performance of dual-intake diesel engines.Keywords: Diesel engine, Numerical simulation, Guide vane, Uniform design, Steady flow test}
-
مطالعات متعددی برای استفاده از سوخت های سبک در موتورهای اشتعال تراکمی به جهت کاهش انتشار آلاینده ها و افزایش بازده انجام شده است؛ موتور های اشتعال تراکمی کنترل واکنشی از جمله این مطالعات هستند. اما استفاده از بخار سوخت های سنگین برای ایجاد احتراق شبه همگن مورد توجه نبوده است. استفاده از بخار گازوییل نیاز به مخزن سوخت ثانویه در خودروها را بر طرف می کند، اما گازوییل حاوی هیدروکربن های سنگین است و از واکنش پذیری بالایی برخوردار است. لذا در این مطالعه با تبخیر گازوییل و تزریق آن به هوای ورودی به مطالعه یک احتراق شبه همگن با کمک بخار گازوییل پرداخته شده است. آزمایشات در سرعت rpm 2000 (سرعت حداکثر گشتاور) انجام شده است. بر اساس نتایج حاصله افزودن بخار گازوییل علی رغم حضور هیدروکربن های سنگین در آن و به عنوان یک سوخت با واکنش پذیری بالا، می تواند انتشار دوده و اکسیدهای نیتروژن را به ترتیب حداکثر 20 درصد و 50 درصد کاهش دهد. افزایش بار موتور اثر مثبت بخار گازوییل در کاهش دوده و اکسیدهای نیتروژن را کاهش می دهد، اما این اثر مثبت تا 80 درصد بار کامل ادامه دارد. افزودن بخار گازوییل تاثیری بر کاهش و یا افزایش تغییرات سیکلی و شدت صدای موتور ندارد، اما انتشار منواکسیدکربن و هیدروکربن های نسوخته را افزایش می دهد. برای تبخیر گازوییل به طور متوسط 15 درصد توان ترمزی موتور مصرف می شود. با گرمایش گازوییل تا دمای گازهای خروجی، می توان به طور متوسط 5 درصد از توان لازم برای تبخیر گازوییل را بازیابی کرد.
کلید واژگان: بخار گازوئیل, احتراق شبه همگن, موتور دیزل, آلاینده ها, مصرف سوخت ویژه, تحلیل فشار سیلندر}Numerous studies on using light fuels in compression ignition engines to reduce emission and increase efficiency have been done. The Reactivity Controlled Compression Ignition engines are one of these studies. Nevertheless, using heavy fuels vapor for achieving partially premixed combustion is not investigated. Using diesel fume (to upgrade conventional combustion to premixed combustion) resolves the need for a secondary fuel tank in a car. However, diesel fuel has heavy hydrocarbons and is a high reactivity fuel. So in this study, diesel has evaporated in a tank, and its vapor has injected into the intake air for studying a semi homogeneous combustion. The tests have performed at 2000 rpm (the speed of maximum torque). According to the achieved results, although diesel has heavy hydrocarbons and is a high reactivity fuel, adding diesel fumigation can reduce soot and NOx emissions up to 20% and 50%, respectively. Increasing load reduces the positive impact of adding diesel fumigation on soot and NOx emission reduction. However, the positive impact of adding diesel fumigation continues up to 80% of the full load. Adding diesel fumigation has no impact on cyclic variation and ringing intensity, but increases CO and HC emission. The evaporation of diesel averagely consumes 15% of brake power. Also on average, 5% of diesel evaporation energy can be supplied by recovering heat energy from the exhaust gas (warming up diesel from ambient temperature to the exhaust gas temperature).
Keywords: Partially Premixed Combustion, Diesel Engine, Emissions, Specific Fuel Consumption, Cylinder Pressure Analysis, Diesel Fumigation, Diesel Vapor} -
امروزه به دلیل رقابت تولیدکنندگان در کیفیت محصولات، معیارهای ارزیابی کیفیت در مراحل مختلف تولید از اهمیت به سزایی برخوردار اند. یکی از این معیارها، قابلیت اطمینان بوده که در بیشتر موارد از ارزیابی های آماری داده های خدمات پس از فروش ناشی از بازگشت قابل توجهی از محصولات و یا به کمک آزمون های شتاب یافته در زمان تولید نمونه محاسبه میشود. در این پژوهش با اجرای آزمون های شتاب یافته متنوع، در پنج شرایط متفاوت و متناسب با تنش های وارده بر روی موتور دیزل، قطعه بازوی لنگ پس از هر آزمون ارزیابی شد. شاخص مورد نظر در تجزیه و تحلیل قابلیت اطمینان در این مطالعه زمان بین خرابی است که پس از جمع آوری و طبقه بندی داده ها به کمک آزمون های شتاب یافته، تایید ماهیت توزیع مستقل و یکسان داده ها به کمک سه آزمون میلیتاری-هندبوک، لاپلاس و اندرسون دارلینگ بررسی گردید. در نهایت نمودار توزیع قابلیت اطمینان بازوی لنگ در زمان های مختلف کارکرد به کمک توزیع آماری لوگ- لجستیک، با توجه به بهترین تطابق با نتایج تجربی، ترسیم شد. نتایج به دست آمده نشان داد که قابلیت اطمینان بازوی لنگ بترتیب برای 177471 و 212753 کیلومتر کارکرد تجمعی برابر با 99 و 95 درصد خواهد شد و پس از 448240 کیلومتر به کمتر از 5 درصد خواهد رسید.
کلید واژگان: قابلیت اطمینان, آزمون شتاب یافته, موتور دیزل, بازوی لنگ}Nowadays, due to the competitive market, quality evaluation criteria at different stages of production are very important. One of these criteria is reliability, which is calculated using statistical evaluations of after-sales service data in most cases or with the help of accelerated tests at the early stage of the product development life cycle. In this research study, various accelerated test scenarios in proportion to the stresses on the diesel engine have been conducted to evaluate the lifetime of the connecting rod parts. The considered criterion for the reliability analysis is the time between failures which is evaluated after collecting and classifying the data using accelerated tests and confirming independent and uniform distribution of data via MIL-Hdbk, Laplace’s, and Anderson-Darling functions. Finally, the distribution diagram of reliability at different operating times was drawn using log-logistic statistical distribution, according to the best agreement with the experimental results. The results depicted that the reliability of the connecting rod would be equal to (0.99 @ 177417 hrs.) and (0.95@ 212753 hrs.) kilometers of cumulative operation, respectively, and after 448240 kilometers it would be less than 0.05.
Keywords: accelerated test method, diesel engine, connecting rod} -
Diesel engines are the most trusted sources in the transportation industry. They are also widely used in the urban transportation system. Most pollutants are related to these engines. Therefore, it is important to increase the performance and reduce exhaust emissions of these engines. Alternative fuels are key to meeting upcoming targets.
An experimental and numerical study was performed to investigate the effect of diesel fuel and hydrogen addition to diesel fuel from 0 to 30% on performance and exhaust emissions. Also in this research for changing diesel fuel, an indirect injection engine converted to direct injection engine. The simulation study was conducted by Star cd codes and experimental investigation was carried out on a diesel engine (Perkins 1103A-33TG1), three- cylinders, and four-stroke with maximum engine power 72.3hp at 1800 rpm. The results from this study showed that the increase of hydrogen to diesel fuel improves the thermal efficiency, resulting in lower specific fuel consumption. Also, the results showed that adding hydrogen until 30%, the cylinder pressure increase by about 9% and occurred the delay of peak pressure about 8 degrees of a crank angle compared to diesel fuel. The other obtained results in emission with 30%H2+Diesel showed the soot emission reduced 11.3%, HC and CO reduced nearly 36%, but NOx increased by about 8.3% due to high combustion temperature.Keywords: Diesel engine, hydrogen fuel, compressed ignition engine, performance, exhaust emissions} -
یکی از مشکلات عمده کشورهای جهان، تامین انرژی مورد نیاز است. بیودیزل یکی از سوخت های جایگزین و منابع انرژی تجدیدپذیر می باشد. در غالب کشورها استفاده از بیودیزل B5در ترکیب سوخت دیزل مرسوم است و اغلب آنها برای بکارگیری ترکیب بیودیزل B20 برنامه ریزی کرده اند. استفاده از گاز طبیعی در موتور دیزلی و بررسی امکان بکارگیری آن در درصدهای بالا یک راهکار نوین دیگر هست، که می تواند وابستگی به سوخت دیزل را کمتر کند. در این راستا در این مطالعه، بیودیزل با فرآیند ترانس استریفیکاسیون از روغن پسماند تولید شد و در دو سطح 5 و %20 در سوخت دیزل ترکیب گردید. سپس از گاز طبیعی در سه سطح 60، 70 و %80 (G/T%) در موتور دیزل استفاده شد. آزمایشات موتور در بار کامل و در دور rpm1500 انجام گرفت. به طور کلی نتایج این آزمایش نشان داد که برای شرایطی که از بیودیزل B20در ترکیب سوخت دیزل و از سوخت گازی نیز در مقدار %80 در موتور دیزل استفاده می شود، به دلیل کاهش در اغلب آلاینده های انتشاری موتور، افزایش بازدهی انرژی و کاهش هزینه اقتصادی، شرایط مناسبی فراهم می گردد؛ به طوری که تحت این شرایط در مقایسه با موتور دیزل معمولی، توان ترمزی و بازده انرژی به ترتیب 8.86 و %29.06 افزایش می یابد، همچنین مصرف سوخت ویژه ترمزی، CO و CO2 نیز به ترتیب 26.5، 57.58 و %4.54 کاهش پیدا می کند، هرچند مقدار NOx اندکی افزایش می یابد، ولی هزینه اقتصادی در مقایسه با دیزل % $/kwh26.47 کمتر می شود و لذا از این جهت نتایج ارزشمندی را درپی دارد.
کلید واژگان: بیودیزل, گاز طبیعی, موتور دیزل, انتشار گازهای گلخانه ای و عملکرد اقتصادی}One of the major problems in the world is the supply of energy. Biodiesel is one of the alternative fuels and renewable energy sources. The use of B5 biodiesel in diesel fuel mixtures is common and most countries have planned to use B20 biodiesel. The use of natural gas in diesel engines and the study of the possibility of using it in high quantities is another new solution, which can reduce dependence on diesel fuel. In this study, biodiesel was produced from waste oil by transesterification process and used in two levels of 5 and 20% in diesel composition. Then natural gas was used in three levels of 60, 70, and 80% (% G / T) in the diesel engine. Engine tests were performed at full-load at 1500 rpm. In general, the test results showed that in conditions where biodiesel B20 was used in the composition of diesel fuel and gaseous fuel was used in the amount of 80% in a diesel engine, suitable conditions in terms of reducing emissions, increasing energy efficiency, and reducing economic costs were obtained; Under these conditions, compared to a conventional diesel engine, brake power, and energy efficiency increased by 8.86 and 29.06%, respectively. Also, brake specific fuel consumption, CO and CO2 were reduced by 26.5, 57.58, and 4.54%, respectively. Although the amount of NOx increased slightly, but, decreased the economic cost compared to diesel 26.47% $/kwh, so the results were valuable.
Keywords: Biodiesel, Natural Gas, Diesel engine, Emissions of greenhouse gases, and economic performance} -
در چند دهه اخیر افزایش گازهای گلخانه ای به چالش و نگرانی بزرگی تبدیل شده است. آلودگی محیط زیست یکی از بزرگ ترین چالش های بشر در قرن بیست و یکم است. بهبود عملکرد موتورهای احتراق داخلی و کاهش میزان آلاینده ها همواره از دغدغه های محققان بوده است. استفاده از سوخت های جایگزین و کنترل و تنظیم ضریب لامبدا به عنوان موثرترین راهکاهایی جهت افزایش راندمان سوخت، کاهش آلودگی و بهبود توانایی حرکتی موتور شناخته شده است. لذا در این پژوهش، رابطه بین نسبت تعادلی هوا به سوخت یا ضریب لامبدا با متغیرهای عملکردی موتور و همچنین آلاینده های خروجی از اگزوز با ا ستفاده از مخلوط های سوخت دیزل- اتانول به عنوان سوخت جایگزین در یک موتور دیزل در دورهای 1700، 1800 و 1900 دور بر دقیقه بررسی شده است. نتایج نشان داد که افزایش درصد اتانول در مخلوط سوخت دیزل و اتانول باعث افزایش ضریب لامبدا گردید. این افزایش باعث کاهش توان و گشتاور موتور گردید. بیشترین کاهش توان در دور 1900 دور در دقیقه و به میزان 1.18 کیلو وات و بیشترین کاهش گشتاور در دور 1800 دور در دقیقه به میزان 5.94 نیوتن در متر بدست آمد. با افزایش مقدار ضریب لامبدا، اکسیژن خروجی از اگزوز به میزان 42.89% در دور 1700 دور در دقیقه افزایش یافت. همچنین افزایش لامبدا باعث کاهش آلاینده های هیدروکربن های نسوخته و منواکسید کربن گردید. به طوری که، بیشترین کاهش این آلاینده ها به ترتیب به میزان 23.8% در دور 1800 دور در دقیقه و 38.75% در دور 1900 دور در دقیقه بدست آمد. همچنین افزایش ضریب لامبدا، اندکی باعث افزایش اکسید های نیتروژن گردید. در نهایت، در اثر استفاده از مخلوط های سوخت دیزل-اتانول و در نتیجه آن افزایش ضریب لامبدا، کاهش قابل توجهی در میزان انتشار آلاینده های خروجی از اگزوز بدست آمد.
کلید واژگان: ضریب لامبدا, نسبت هوا به سوخت, موتور دیزل, سوخت جایگزین, آلاینده های اگزوز}In recent decades, rising greenhouse gas emissions have become a major challenge and concern. Environmental pollution is one of the greatest human challenges of the 21st century. Improving the performance of internal combustion engines and reducing the amount of pollutant emissions has always been a concern for researchers. The use of alternative fuels and the control and adjustment of the lambda coefficient are known as the most effective ways to increase fuel efficiency, reduce pollution and improve engine mobility. Therefore, in this study, the relationship between air-to-fuel equilibrium ratio or lambda coefficient with engine performance and exhaust emissions of a diesel engine using diesel-ethanol fuel blends as an alternative fuel at 1700, 1800 and 1900 rpm engine speeds has been investigated. The results showed that increasing the percentage of ethanol in the diesel-ethanol fuel blend increased the lambda coefficient. This increase reduced engine power and torque. The highest power reduction was achieved at 1900 rpm at the rate of 1.18 kW and the maximum torque reduction at 1800 rpm at the rate of 5.94 N.m. As the lambda coefficient increased, the exhaust oxygen output increased by 42.89% at 1700 rpm. The increase in lambda also reduced the emissions of unburned hydrocarbons and carbon monoxide. Thus, the highest reduction of these pollutants was 23.8% at 1800 rpm and 38.75% at 1900 rpm, respectively. Also, increasing the lambda coefficient slightly increased the nitrogen oxides. Finally, due to the use of diesel-ethanol fuel blends and as a result of increasing the lambda coefficient, a significant reduction in the amount of emissions of exhaust gases was achieved.
Keywords: Lambda coefficient, Air to fuel ratio, diesel engine, Alternative fuel, Exhaust emissions} -
In internal combustion engines, the turbocharger and alternative fuels are two important factors affecting engine performance and exhaust emission. In this investigation, a one-dimensional computational fluid dynamics with GT-Power software was used to simulate a six-cylinder turbocharged diesel engine and the naturally aspirated diesel engine to study the performance and exhaust emissions with alternative fuels. The base fuel (diesel), methanol, ethanol, the blend of diesel and ethanol, biodiesel and decane was used. The results showed that decane fuel in the turbocharged engine has more brake power and torque (about 3.86%) compared to the base fuel. Also, the results showed that the turbocharger reduces carbon monoxide and hydrocarbon emissions, and biodiesel fuel has the least amount of carbon monoxide and hydrocarbon among other fuels. At the same time, the lowest NOX emission was obtained by decane fuel. As a final result can be demonstrated that the decane fuel in the turbocharged engine and the biodiesel fuel in the naturally aspirated engine could be a good alternative ratio to diesel fuel in diesel engines.
Keywords: Diesel engine, Fuel, GT-Power, Performance, Emission, Turbocharger} -
The novel diesel engines with advanced fuel injection systems are equipped with solenoid injectors comprising multiple small nozzle orifices which makes considerable improvement in fuel spray characteristics and engine performance along with providing high pressure fuel injection system. On the other hand, poor fuel quality, impurities and heavy metal elements in the diesel fuel, and high temperature medium in the diesel engines combustion chamber lead to remarkable deposits formation in the small holes of the nozzle. In addition, it results in partial or complete nozzle hole obstruction which is called injector nozzle coking having detrimental effects on discharged spray ideal behavior and proper engine performance. In this work, the analysis of coking phenomenon influences on diesel spray macroscopic characteristics have been done. Initially, the coked injectors with different time operation and deposit amounts are prepared under experimental and specific operating conditions. Then, the images recorded from the spatial and temporal evolution of a diesel spray in various injection and chamber pressures, are processed through the extended code in MATLAB software in order to analyze discharged fuel spray characteristics. The SCHLIEREN Imaging Method with high speed camera has been utilized in a CVC (constant volume chamber) without combustion. Non-Destructive Electron Microscopy Method of SEM (Scanning Electron Microscope) imaging was utilized in order to analyze sediments quantity and construction changes during injector working in the real engine conditions. The results show that, sediments occupy 20, 40, 75 and 90% of the total hole opening surface, respectively in the injectors with 300, 700, 800 and 900 hours operating time. By increasing the injector operation time and accumulated sediment amount on the nozzle, the discharged injector spray exhibits a more inappropriate behavior. Moreover, The Results revealed that coking has considerable effects on the spray tip penetration at low injection pressures. As injection pressure increases, the decreasing rate of the penetration length alleviates gently. In other words, at high injection pressures (1500 bar and higher) the penetration length has minor drop compared with non-utilized injectors even at 900 hours operating time, but the spray projected area can be reduced up to 28% in high chamber pressures.
Keywords: Diesel engine, Nozzle coking, Schlieren imaging, Coked injector} -
A single cylinder diesel engine was tested under different loading conditions with its piston crown coated with the Thermal Barrier Coating (TBC). The main objective of this work is to investigate the effect of the TBC on performance and emission characteristics in the diesel engine. The top surface of the piston was coated with 100 µm thick NiCrAl as lining layer by plasma spray method. A mixture of 88% Yttria stabilized Zirconia, 4% MgO and 8% TiO2 of 150 µm thick were coated over the lining layer. Exhaust emission (HC, NOx, CO and CO2) parameters were investigated using AVL exhaust gas analyzer. The results showed that the brake thermal efficiency was increased by 10% and brake specific fuel consumption was decreased by 9.8% for coated piston in comparison with the uncoated piston engine. It was also observed that, smoke, CO and HC emissions were decreased in the TBC engine as compared with the baseline engine. In addition carbon di oxide (CO2) and nitrogen oxide (NOx) emissions were partially increased.
Keywords: Yttria stabilized zirconia, Thermal barrier coating, Diesel engine, Piston crown, Plasma spray, Emission} -
In this paper, a novel thermal driven supercharging system for downsizing of a turbocharged diesel engine is proposed. Furthermore, Kalina cycle has been used as waste heat recovery system to run the mounted supercharging system. The waste heat of air in engine exhaust and intake pipes is converted to cooling and mechanical power by Kalina cycle. The mechanical power produced by Kalina cycle is transferred to an air compressor to charge extra air to the engine for generating more power. This feature can be used for downsizing the turbo-charged heavy duty diesel engine. In addition, the heat rejected from engine intercooler is transferred to Kalina cycle vapor generator component, and part of engine exhaust waste heat is also used for superheating Kalina working fluid before entering engine. Then, first and second law analysis are performed to assess the operation of the engine in different conditions. Moreover, an economic model is provided for the Kalina cycle which is added to engine as supplementary component. Finally, simple payback and Net present value methods are used for economic evaluation of the added supplementary system. According to the results, mounting the novel waste heat driven air charging system has resulted in increment of air mass flow rate which leads to extra power generation (between 9 kW and 25 kW). The payback period and profitability index of the project are approximately 3.81 year and 1.26, consecutively.Keywords: Waste heat recovery, Diesel engine, Kalina cycle, Power production, Cooling power}
-
Investigation of injection timing and different fuels on the diesel engine performance and emissionsStart of fuel injection and fuel type are two important factors affecting engine performance and exhaust emissions in internal combustion engines. In the present study, a one-dimensional computational fluid dynamics solution with GT-Power software is used to simulate a six-cylinder diesel engine to study the performance and exhaust emissions with different injection timing and alternative fuels. Starting the fuel injection was from 10 °CA BTDC to the TDC with an interval between two units and from alternative fuel bases (diesel), including methanol, ethanol, diesel, and ethanol compounds, biodiesel and decane was used. To validate the model, a comparison is made between simulation data and experimental data (including torque and power) showing the validation error is less than 6.12% and indicating the software model validation. Also, the modeling results show that decane fuel has higher brake power and brake torque of more than 6.10 % while fuel is injected at 10 °CA BTDC compared to the base fuel, and illustrates a reduction of 5.75 % in specific fuel consumption due to producing higher power. In addition, with the advance of injection timing compared to baseline, the amount of CO and HC in biodiesel fuel reduces to 83.88% and 64.87%, respectively, and the lowest NOX emission with the retardation of starting injection, to decane fuel is awarded. In general, the results show that decane fuel could be a good alternative to diesel fuel in diesel engines when it starts fuel injection at 10 °CA BTDC.Keywords: Diesel engine, Fuels, GT-Power, Injection timing, Performance, Emission}
-
Changing the compression ratio and presence of turbocharger are two important issues, affecting on performance, and exhaust emissions in internal combustion engines. To study the functional properties and exhaust emissions in regards to compression ratio at different speeds, the numerical solution of the governing equations on the fluid flow inside the combustion chamber and the numerical solution of one-dimensional computational fluid dynamics with the GT-Power software carried out. The diesel engine was with a displacement of 6.4 Lit and Turbocharged six-cylinder. In this engine was chosen, the compression ratio between 15: 1 and 19: 1 with intervals of one unit and the range of engine speed was from 800 to 2400 rpm. The results showed that by the presence of a turbocharger and changing the compression ratio from 17: 1 to 19: 1, the braking power and torque increased by about 56.24% compared to the non-turbocharged engine. In addition, was reduced the brake specific fuel consumption due to higher power output. The amount of CO and HC emissions decreases based on the reduction of the compression ratio compared to the based case, and the NOX value increases due to the production of higher heat than turbocharged engines. The overall results showed that the turbocharged engine with a 19: 1 compression ratio has the best performance and pollution characteristics.
Keywords: Numerical solution, engine performance, Diesel engine, compression ratio, Turbocharger}
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.