chance constrained fuzzy programming
در نشریات گروه مواد و متالورژی-
The purpose of this article is to model and solve an integrated location, routing and inventory problem (LRIP) in cash-in-transit (CIT) sector. In real operation of cash transportation, to decrease total cost and to reduce risk of robbery of such high-value commodity. There must be substantial variation, making problem difficult to formulate. In this paper, to better fit real life applications and to make the problem more practical, a bi-objective multiple periods, capacitated facilities with time windows under uncertain demand (BO-PCLRIP-TW-FD) in the LRIP, motivated by the replenishment of automated teller machines, is proposed. Then, using the chance constrained fuzzy programming to deal with uncertain parameters, the comprehensive model is formulated as a crisp mixed-integer linear programming. At last, to validate the mathematical formulation and to solve the problem, the latest version of ε-constraint method (i.e., AUGMECON2) is used. The proposed solution approach is tested on a realistic instance in CIT sector. Numerical results demonstrate the suitability of the model and the formulation. The ability of the model to be useful references for security carriers in real-world cases.
Keywords: Location-routing-inventory Problem, Cash in Transit, Multiple objectives optimization, Chance Constrained Fuzzy Programming, Augmented ε-constraint
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.