discrete element method
در نشریات گروه مهندسی معدن-
مجله محیط و معدن، سال شانزدهم شماره 3 (Summer 2025)، صص 1141 -1151
Unlike the mechanical properties of intact rock, which can be obtained on a laboratory scale, estimating the mechanical properties of the jointed rock mass is very difficult due to the presence of different joints and the complexity of the joints. Therefore, to calculate the mechanical parameters of the jointed rock mass and use the continuous media theory of the jointed rock mass, it is necessary to calculate the Representative Element Volume (REV) of the rock mass. In this study, the Discrete Element Method (DEM) and the mechanical index of strength were used to investigate the effect of persistent and non-persistent joint angles, as well as model size on the REV in x, y, and z directions. The numerical results showed that by changing the joint angles and side length, both the strength and the REV of the rock mass were affected. The maximum representative side length for the persistent joint in the x and z directions occurred at angles of 60° and 75°, respectively. The minimum strength was obtained for joints in the x and z directions at a 45° angle. Finally, the REV for persistent and non-persistent joints is calculated as 10*0.5*8m and 4*0.5*4m, respectively.
Keywords: Numerical Modeling, Jointed Rock Masses, Discrete Element Method -
Failure Mechanisms of Concrete-Bolt Attachment Surface: Impact of Cable Bolt Indent Number and Shape
The mechanical behavior of rock-rock bolt interface considering the effects of indents’ shape and their number was numerically simulated based on discrete element method using the two-dimensional particle flow code. The conventional and standard uniaxial compressive and Brazilian tensile strengths tests were used to calibrate the modelled samples with 100 cm 100 cm in dimension. The numerical models were prepared such that different indent shape and number were inserted in the cable bolts arrangements during the rock reinforcement process. The effects of confining pressure 3.7 MPa and different shear failure loads were modeled for the punch shear test of the concrete specimens. The results of this study showed that the dominant failure mode of the rock-cable bolt interface was of tensile mode and the shape and number of cable indents significantly affected the strength and mechanical behavior of the modelled samples. It has also been showed that the indent dimensions and number affected the shear strength of the interfaces.
Keywords: Tensile Strength, Rock Bolt Indent Shape, Interface, Discrete Element Method -
Around 70% of the world's hydrocarbon fields are situated in reservoirs containing low-strength rocks, such as sandstone. During the production of hydrocarbons from sandstone reservoirs, sand-sized particles may become dislodged from the formation and enter the hydrocarbon fluid flow. Sand production is a significant issue in the oil industry due to its potential to cause erosion of pipes and valves. Separating grains from oil is a costly process. Oil and gas companies are motivated to reduce sand production during petroleum extraction. Hydraulic fracturing is one of the parameters that can influence sand production. However, understanding the complex interactions between hydraulic fracturing mechanisms and sand production around wellbores is critical for optimizing reservoir recovery and ensuring the integrity of production wells. This article explores the integrated simulation approach to model hydraulic fracturing processes and assess their effects on sand production. Two-dimensional models were created using the discrete element method in PFC2D software for this research. The fractures' length in the models varies based on the well's radius. The angle between two fractures at 90 and 180 degrees to each other was also modeled. In the first case, the length of the fracture is less than the radius of the well, in the second case, the values are equal and finally, the fracture length is assumed to exceed the well radius. The calibrated and validated results demonstrate the change in sand production rate in comparison to the unbroken state.
Keywords: Discrete Element Method, Hydraulic Fracturing, Sand Production, Oil Well -
با رشد روز افزون حفریات عمیق معدنی و عمرانی، شناخت و تحلیل شکست سنگ بکر اهمیت زیادی یافته است. دو مشخصه مهم تنش در شکست سنگ بکر، تنش شروع ترک و تنش خسارت ترک است که اهمیت بسزایی در شناخت رفتار سنگ هنگام شکست دارد. با وجود انجام مطالعات متعدد آزمایشگاهی در زمینه شکست فشاری سنگ بکر، مطالعات بسیار محدودی در زمینه تحلیل این دو سطح تنش در شکست برشی سنگ بکر انجام شده است. در این مطالعه با استفاده از مدل سازی عددی المان مجزا، رفتار سنگ بکر در آزمون برش مستقیم در حالت های مختلف شکست ترد، انتقالی و شکل پذیر بررسی و نسبت تنش شروع ترک و خسارت ترک به مقاومت برشی اوج تعیین شد. برای این منظور، ابتدا خواص ریزمقیاس مدل عددی تحت شرایط مختلف بارگذاری کششی مستقیم، تک محوره و سه محوره برای نوعی سنگ مصنوعی واسنجی شد. سپس آزمون برش مستقیم بر روی سنگ بکر و تحت شرایط تنش نرمال قایم متفاوت شبیه سازی شد. نتایج مدل سازی آزمون برش انجام گرفته با نتایج آزمایشگاهی موجود در مطالعات پیشین مورد مقایسه قرار گرفت و مشخص شد که مدل عددی توانایی مناسبی در پیش بینی رفتار برشی سنگ بکر را دارد. همچنین مشخص شد که تنش شروع ترک و تنش خسارت ترک به ترتیب در بازه های 70 تا 91 و 85 تا 95 درصد مقاومت برشی اوج تحت تنش های قایم مختلف رخ می دهد. نتایج این تحقیق نشان داد که با افزایش تنش نرمال، نسبت تنش شروع ترک و خسارت ترک به مقاومت برشی اوج یک روند کاهشی دارد. از نتایج این تحقیق می توان برای تحلیل سازه های تحت برش همانند دیواره های شیب دار و پیچ سنگ ها استفاده کرد.
کلید واژگان: تنش شروع ترک، تنش خسارت ترک، آزمون برش مستقیم، شکست، مدل سازی عددی المان مجزاDue to the significant advancement in the mining and tunneling industry, the depth of underground excavation has been considerably increased. As a consequence of increase in depth, the intact rock strength plays a significant role in rock mass failure. Therefore, the study of intact rock failure has become more crucial. Crack damage stress and crack initiation stress are the two important characteristics of intact rock failure, which have been studied rarely in the shear failure process. This study aims to investigate the crack damage and crack initiation stresses in the shear failure by numerical modeling of direct shear test (DST) using the discrete element method. First, the micro-mechanical properties of the numerical model were calibrated against physical experiments in uniaxial tension, uniaxial compression and triaxial compression tests. Then, the numerical models were validated by comparing against physical direct shear tests under different normal stresses. By undertaking the DST under eight different constant normal stresses, these two stress levels have been studied in brittle, brittle-ductile transition and ductile failure modes. It was revealed that the crack initiation and crack damage stresses occur in 70-91 and 85-95 percent of the peak shear strength, respectively. Also, it was observed that the ratio crack initiation and crack damage stresses to the peak shear strength decrease with an increase in the normal stress. The outcomes would be useful for studying the structures under shear stress like landslides and rock bolts.
Keywords: Crack Initiation Stress, Crack Damage Stress, Peak Shear Strength, direct shear test, Discrete Element Method -
This work presents the hollow center cracked disc (HCCD) test and the cracked straight through Brazilian disc (CSTBD) test of oil well cement sheath using the experimental test and Particle Flow Code in two-dimensions (PFC2D) in order to determine mode I fracture toughness of cement sheath. The tensile strength of cement sheath is 1.2 MPa. The cement sheath model is calibrated by outputs of the experimental test. Secondly, the numerical HCCD model and CSTBD model with diameter of 100 mm are prepared. The notch lengths are 10 mm, 20 mm, 30 mm, and 40 mm. The tests are performed by the loading rate of 0.018 mm/s. When the notch length in CSTBD is 40 mm, the external work is decreased 48%, related to the maximum external work of model with notch length of 10 mm (0.225 KN*mm decreased to 0.116 KN*mm). When the notch length in HCCD is 30 mm, the external work is decreased 33%, related to the maximum external work of model with notch length of 10 mm (0.06 KN*mm decreased to 0.04 KN*mm). The fracture energy is largely related to the joint length. The fracture energy is decreased by increasing the notch length. In constant to the notch length, the fracture energy of the CSTBD model is more than the HCCD model. Mode I fracture toughness is constant by increasing the notch length. The HCCD test and the CSTBD test yield a similar fracture toughness due to a similar tensile stress distribution on failure surface. The experimental outputs are in accordance to the numerical results.
Keywords: HCCD, CSTBD, mode I fracture toughness, cement slurry, Discrete Element Method -
This work presents the Semi-Circular Bend (SCB) test and Notched Brazilian Disc (NBD) test of shotcrete using experimental test and Particle Flow Code in two-dimensions (PFC2D) in order to determine a relation between mode I fracture toughness and the tensile strength of shotcrete. Firstly, the micro-parameters of flat joint model are calibrated using the results of shotcrete experimental test (uniaxial compressive strength and splitting tensile test). Secondly, numerical models with edge notch (SCB model) and internal notch (NBD model) with diameter of 150 mm are prepared. Notch lengths are 20 mm, 30 mm, and 40 mm. The tests are performed by the loading rate of 0.016 mm/s. Tensile strength of shotcrete is 3.25 MPa. The results obtained show that by using the flat joint model, it is possible to determine the crack growth path and crack initiation stress similar to the experimental one. Mode I fracture toughness is constant by increasing the notch length. Mode I fracture toughness and tensile strength of shotcrete can be related to each other by the equation, σt = 6.78 KIC. The SCB test yields the lowest fracture toughness due to pure tensile stress distribution on failure surface.
Keywords: mode I fracture toughness, Discrete Element Method, Shotcrete -
One of the important cost items in mechanized tunneling is the cost of repairing or replacing the disc cutters that have suffered from normal wear during the boring of the hard abrasive rocks. For inspecting the health of the disc cutters, the boring operation shall be stopped, and after checking, the worn disc cutters may be replaced. In this work, the dynamic process of the TBM boring in the jointed rocks is simulated using a real-scale numerical analysis based on the rock fracturing factor using the discrete element method (DEM). The stress distributions induced within the disc cutters as well as the development of the plastic zones in the rock are investigated and compared with the actual results recorded in the Kerman water conveyance tunnel (KWCT). The numerical results indicate that the increase in the rock fracturing causes a decrease in the induced stresses and an increase in the size of the plastic zone. In other words, a higher penetration rate as well as more lifetime for disc cutters can be achieved in highly fractured rocks. Moreover, the average von Misses stress in the disc cutters in the highly fractured rocks is predicted about 16-23% less than stress induced in the slightly fractured rocks. Due to the TBM tunneling, the volume of the plastic zone as well as the actual penetration depth in the highly fracturing rocks are also about 40% and 42% higher than in the slightly fractured rocks under applying the same TBM parameters, respectively.
Keywords: Disc cutter, Normal wear, Real-scale numerical model, Discrete Element Method, Von Mises stress -
Split Hopkinson Pressure Bars (SHPB) test is widely used among the various methods for investigating the dynamic behavior of rocks at high strain rates. Various factors affect the waveform and the results of this test. In this study, the aim was to investigate the effect of geometrical parameters of strikers including the effect of shape, length, and impact cross-section width (ICSW) on the waveform induced in the SHPB test using numerical modeling. For this purpose, in the first stage, the required information including geometrical properties and the required micro-parameters have been collected from two laboratory and numerical modeling studies. Then, the initial model was constructed using the discrete element numerical method (DEM), and its results were compared with laboratory and numerical results. Evaluation of the effect of striker shape demonstrated that SS strikers have induced a semi-sinusoidal wave and CS strikers have induced a quasi-rectangular wave. Among the waveform properties, the wavelength was strongly related to the geometric properties of the strikers in both CS and SS types in a way that was directly related to the striker’s length and inversely related to the ICSW. On the other hand, the maximum amplitude is directly related to the striker’s length and ICSW in both CS and SS types. According to the results, the use of SS strikers is more appropriate according to the waveform, and its geometric properties can be determined according to the problem requirement, using numerical modeling results.Keywords: Hopkinson Bar Test, Dynamic Modeling, Waveform, Discrete element method, PFC2D Software
-
Investigating the crack propagation mechanism is of paramount importance in analyzing the failure process of most materials. This process may be exposed during each kind of loading on the materials. In this work, the cracking mechanism in rock-like materials is studied using the numerical methods and compared with the experimental test results. However, the mechanism of crack growth in brittle materials such as rocks is influenced by different parameters. This research work focuses on the effect of the initial crack angles on the crack growth paths of these materials. Some cubic samples containing pre-existing cracks are tested in compression by considering different flaw orientations. The specimens are made of cement, water, and sand. Moreover, the mentioned process is numerically simulated using three different methods the finite difference method for discontinuous bodies or discrete element method, the displacement discontinuity method, and the versatile finite element method. The micro-parameters for simulation are gained by the trial-and-error procedure for the discrete element method. Eventually, the crack growth paths observed in the experiments are compared with the numerically simulated models. The results obtained show that these central cracks propagate in two ways, which are dependent on their initial angle. By increasing the initial crack angle to greater than 30° (α > 30°), the wing crack path moves further away from the initial crack, and by decreasing α to smaller than 30° (α < 30°), only the shear cracks are initiated. Therefore, the validity and accuracy of the results are manifested by comparing all the corresponding results obtained by different methods. Based on these results, it can generally be concluded that the strength of the cubic (rock material) specimens increases with increase in the crack angles with respect to the applied loading direction.
Keywords: Crack Propagation, Fracture Mechanics, Physical Modeling, Finite Element Method, Discrete Element Method -
امروزه روش های تحلیل عددی نقش عمده ای را در پیشرفت علم بازی کرده و توانایی خود را در حل مسائل فیزیکی با دقت بالا به اثبات رسانیده اند. روش های تحلیل عددی بسیار متنوع هستند ولی بیشتر این روش ها ، مانند روش اجزاء محدود، برای مدلسازی محیط های پیوستار استفاده می شوند. یکی از روش های تحلیل عددی که برای مدلسازی محیط ها و مواد ناپیوستار استفاده می شود، روش المان مجزا است. معمولا در این روش، مواد ناپیوستار به صورت مجموعه ای از بلوک ها ی(ذرات) مجزا در نظر گرفته می شوند که این بلوک های مجزا می توانند به صورت صلب یا تغییر شکل پذیر رفتارکرده و هم چنین امکان جابه جایی ها و چرخش های بزرگ را داشته باشند. مواد ناپیوستار، مانند سنگ ها و مواد گرانول، دارای ذراتی با شکل تصادفی و نامنظم هستند. لذا ایجاد یک الگوریتم به منظور شبیه سازی ذرات تصادفی، بسته بندی آنها و در نهایت استفاده از این مجموعه ذرات بسته بندی شده به عنوان ورودی اولیه نرم افزارهایی که از روش المان مجزا استفاده می کنند؛ می تواند کمک شایانی در تحلیل محیط ها و مواد ناپیوستار، مخصوصا در مکانیک پودر، صنایع معدنی، مکانیک سنگ، جریان مواد گرانول و غیره انجام دهد. در این مقاله ابتدا یک الگوریتم جدید برای تشخیص برخورد و بسته بندی احجام تصادفی از طریق تعریف نقاط کنترل، ارائه می گردد. از ویژگی های این الگوریتم بسته بندی آن است که قابلیت بسته بندی ذرات با هر شکلی را دارد. سپس با استفاده از الگوریتم بهینه سازی ازدحام ذرات، حالت بهینه این الگوریتم بسته بندی، برای N ذره به دست آورده می شود. در نهایت به منظور اعتبار بخشی به این الگوریتم بهینه سازی شده، نتایج حاصل از آن با نتایج حاصل از الگوریتم های بسته بندی موجود مقایسه می شود. نتایج حاصل از این الگوریتم، افزایش کیفیت و تراکم بسته بندی اولیه ذرات را نسبت به روش بسته بندی دیجیتال نشان می دهد که این امر نمایانگر کارایی و قابلیت بالای این روش بسته بندی جدید است.
کلید واژگان: ذرات تصادفی، تحلیل مواد ناپیوستار، روش المان مجزا، الگوریتم های بسته بندی، الگوریتم PSOJournal of Aalytical and Numerical Methods in Mining Engineering, Volume:9 Issue: 20, 2019, PP 15 -30SummaryIn this paper, a new algorithm was offered for collision detection and packing random volumes. Among the features of this algorithm is its packing feature which is capable of packing particles with any shape. Then, using PSO algorithm, the optimal state of this packing algorithm was obtained. Finally, in order to validate the optimized algorithm, the results were compared with the results of digital packing algorithm. This comparison showed that the new packing method proposed in this paper (the optimized packing method of using control points) provides good results compared with digital packing method.
IntroductionUnlike dynamic packing methods, geometric packing methods allow the rapid packing of a large number of particles; these packing structures can be used as the initial state (initial input) in numerical analysis of discontinuous materials. Geometric packing methods, in fact, improve the efficiency of the particles preparation phase for numerical analysis and dynamic simulation. For example, sorting and preparation of hundreds of particles through using dynamic methods may take several hours, while using geometric methods, it may take less than few minutes. The disadvantage of geometric methods is that as the particles do not reach dynamic balance in these methods, no information is obtained about the contact forces. However, geometric methods is close enough to the particles mechanical balance. As a result, the packing structure obtained by these methods can be used as a good starting point for dynamic simulations.
Methodology and ApproachesThe new packing algorithm offered in this paper is based on control and placement of each shape by using boundary points (the outer surface points of the shape) or all points of the shape. Hence, this algorithm is capable of packing the particles with any shape. This new algorithm was originally designed for collision detection and packing of two random shapes and, then, was generalized to N particles. Finally, using Particle Swarm Optimization (PSO), it was optimized.
Results and ConclusionsThe new packing algorithm was generalized to N particles and, using the algorithm of PSO, it was optimized. After the optimization of this packing algorithm, it was validated through comparing its results with the results of digital packing method; and it was observed that, in comparison with the digital packing method, the new packing method proposed in this paper (the optimized packing method of using control points) can offer good results. In the optimized packing method of using control points, the following factors have a significant impact on the packing quality and density of particles:
The order of adding particles into the container.
The number of the times the answers are repeated (M), the increase of which leads to the higher density and quality of packing.
Prioritizations of the criteria for the calculation of fitness function (through determining the values of K1 and K2 coefficients).Keywords: Random Particles, Analysis of Discontinuous Materials, Discrete Element Method, Packing Algorithms, Particle Swarm Optimization -
مطالعه درزه ها و تاثیر آنها بر رفتار توده سنگ زمینه تحقیقاتی فعالی در ژئومکانیک فراهم آورده است. تغییرشکل پذیری یک توده سنگ حاوی دسته درزه های سیستماتیک ممتد به طور بالقوه ناهمسانگرد بوده و به صورت عمده به وسیله خصوصیات مکانیکی و هندسی درزه ها کنترل می شود. خصوصیات تغییرشکل سنگ ها به طور معمول با استفاده از آزمون های آزمایشگاهی و برجا تعیین می شوند. آزمایشات برجا بر اساس بارگذاری توده سنگ و اندازه گیری تغییرشکل حاصله استوار هستند. از روش های عددی و تحلیلی می توان به عنوان جایگزین آزمایش های برجای پر هزینه و وقت گیر برای مطالعه خصوصیات تغییرشکل سنگ ها استفاده کرد. در مدل های تحلیلی، فرضیاتی مانند تعامد دسته درزه ها موجب ساده سازی هایی می شوند که ممکن است از واقعیت به دور باشند. روش های عددی در مقایسه با خط مشی های تحلیلی دارای این مزیت هستند که در استنتاج خواص توده سنگ می توان تاثیر نامنظم بودن هندسه سیستم درزه داری را به طور مستقیم در مدلسازی دخیل نمود. در این مقاله، مدل های عددی اجزای مجزا فارغ از ساده سازی های هندسی مفروض در روش های حل دقیق اجرا شده اند. بررسی آماری نتایج عددی حاصل به منظور اطلاع از نحوه پراکندگی داده ها انجام شده است. سپس، میزان انحراف تغییرشکل برآورد شده با استفاده از روابط ساختاری شامل مدل های پیشنهادی (1) آمادیی و گودمن و (2) هوانگ و همکاران نسبت به مدل های عددی جهت ارزیابی صحت روابط مذکور در شرایط هندسی واقعی درزه ها مورد بررسی قرار گرفته است. مولفه های تغییرشکل در بیشتر موارد بیانگر تاثیر قابل توجه پارامترهای هندسی مورد مطالعه در روند تغییرات است. این نتایج برای بررسی صحت روابط مذکور در برآورد میدان تغییرشکل توده سنگ های درزه دار غیرمتعامد ارایه شده است.
کلید واژگان: توده سنگ درزه دار، تغییر شکل پذیری، محیط پیوسته معادل، روش اجزای مجزاJournal of Aalytical and Numerical Methods in Mining Engineering, Volume:9 Issue: 19, 2019, PP 17 -35Summary
This work is aimed to investigate the effects of joints configuration in a rock mass on validity of the deformation values obtained using equivalent continuum approach. For this purpose, discrete element method is utilized to numerically model complicated joint configuration comparing to in-built assumptions of equivalent continuum equations. Then, deformation components obtained by equivalent continuum solutions were compared with the results of discrete element numerical analyses and in-situ tests to demonstrate the effect of geometric parameters. Finally, these results are provided to evaluate validity of equivalent continuum relations in deformation analysis of non-orthotropic rock masses, unlike their assumptions.
IntroductionThere are two different techniques to determine deformation behavior of jointed rock masses: direct and indirect methods. Direct methods include laboratory tests on rock specimens and in situ tests on field rock masses. The overall characteristics of large-scale rocks are often not available through direct measurements due to lack of time and financial resources. Indirect methods consist of empirical correlations, analytical solutions and numerical modelling. Empirical methods are based on correlation between rock mass deformability and its classification indices such as rock quality designation (RQD), rock mass rating (RMR) and geological strength index (GSI). In spite of their simplicity, it is not possible to capture anisotropic and scale-dependent behavior of rock mass using empirical techniques. Analytical or closed-form methods consider rock mass as an equivalent continuum in which the deformation is the sum of deformation of the intact rock and deformation of the joint sets. These solutions are digest and simple, and only can be used to analyze deformation of regularly jointed rocks. Most of them are inapplicable when dealing with irregular joint systems which are more common in nature. On the other hand, numerical modelling is advantageous to study the effect of joint sets configuration on deformation behavior of a jointed rock mass, and can be used to determine the accuracy of closed-form deformation analysis of irregularly jointed rock masses.
Methodology and ApproachesFor analysis purposes, the applicability of equivalent continuum approaches in estimating deformation behavior of rock masses with three intersecting joint sets was studied. Two different cases were considered, namely, deviation of the intersection angle and dip direction of the second joint set. 3DEC software contains several different behavior models for intact rock in which one or more of them can be used depending on governing assumptions. According to analytical approaches, isotropic elastic and Coulomb slip models were assigned to intact rock and joints, respectively. Note that joints were prevented to deform plastically because the purpose was to study the elastic deformation of jointed rock masses using both analytical and numerical analysis.
Results and ConclusionsAccording to the obtained results, following conclusions can be reported for the conducted study:
Axial analytical and numerical deformation values have a high sensitivity to intersection angle but there is no evidence to know how they change with this parameter.
Further deviation of intersection angle results in increasing difference of numerical and analytical lateral deformation in the direction perpendicular to intersecting joint sets.
Low discrepancies were recorded for lateral strains parallel to intersecting joint sets strike while changing intersection angle. Therefore, it can be concluded that the application of equivalent continuum method to estimate this component would be somehow accurate.
The effect of dip angle of intersecting joint sets is not considered in the non-orthotropic equivalent continuum approach. However, results generally show a considerable effect of this parameter on the discrepancy of analytical and numerical values.
Differences between analytical and numerical deformation results show that changing the dip direction does not significantly affect the results, but applicability of the corresponding equivalent continuum solution is questionable in some cases.
Application of analytical equation for axial strain estimation is not recommended when dip angle of intersecting joint sets has a dominant contribution to deformation.
In the case of dip direction deviation, lateral strain estimation parallel to joints strike through the corresponding analytical solution has an acceptable accuracy.Keywords: Jointed rock mass, deformability, equivalent continuum media, discrete element method -
مجله محیط و معدن، سال دهم شماره 1 (Winter 2019)، صص 125 -138The explosion process of explosives in a borehole applies a very high pressure on its surrounding rock media. This process can initiate and propagate rock fractures, and finally, may result in the rock fragmentation. Rock fragmentation is mainly caused by the propagation of inherent pre-existing fractures of the rock mass and also from the extension of the newly formed cracks within the intact rock due to the explosion. In this work, the process of extension of blast-induced fractures in rock masses is simulated using the discrete element method. It should be noted that, in this work, fracture propagation from both the rock mass inherent fractures and newly induced cracks are considered. The rock mass inherent fractures are generated using the discrete fracture network technique. In order to provide the possibility of fracture extension in the intact rock blocks, they are divided into secondary blocks using the Voronoi tessellation technique. When the modeling is completed, the fracture extension processes in the radial and longitudinal sections of a borehole are specified. Then a blast hole in an assumed rock slope is modeled and the effect of pre-splitting at the back of the blast hole (controlled blasting) on the fracture extension process in the blast area is investigated as an application of the proposed approach. The modeling results obtained show that the deployed procedure is capable of modeling the explosion process and different fracture propagations and fragmentation processes in the rock masses such as controlled blasting.Keywords: Rock Mass Explosion, Dynamic Fracturing, Crack Extension, Discrete Element Method, Discrete Fracture Network
-
Numerical probabilistic analysis for slope stability in fractured rock masses using DFN-DEM approachInternational Journal of Mining & Geo-Engineering, Volume:51 Issue: 1, Winter and Spring 2017, PP 79 -90Due to existence of uncertainties in input geometrical properties of fractures, there is not any unique solution for assessing the stability of slopes in jointed rock masses. Therefore, the necessity of applying probabilistic analysis in these cases is inevitable. In this study a probabilistic analysis procedure together with relevant algorithms are developed using Discrete Fracture Network-Distinct Element Method (DFN-DEM) approach. In the right abutment of Karun 4 dam and downstream of the dam body, five joint sets and one major joint have been identified. According to the geometrical properties of fractures in Karun river valley, instability situations are probable in this abutment. In order to evaluate the stability of the rock slope, different combinations of joint set geometrical parameters are selected, and a series of numerical DEM simulations are performed on generated and validated DFN models in DFN-DEM approach to measure minimum required support patterns in dry and saturated conditions. Results indicate that the distribution of required bolt length is well fitted with a lognormal distribution in both circumstances. In dry conditions, the calculated mean value is 1125.3 m, and more than 80 percent of models need only 1614.99 m of bolts which is a bolt pattern with 2 m spacing and 12 m length. However, as for the slopes with saturated condition, the calculated mean value is 1821.8 m, and more than 80 percent of models need only 2653.49 m of bolts which is equivalent to a bolt pattern with 15 m length and 1.5 m spacing. Comparison between obtained results with numerical and empirical method show that investigation of a slope stability with different DFN realizations which conducted in different block patterns is more efficient than the empirical methods.Keywords: Rock Slope, Discrete fracture network, Probabilistic analysis, Discrete Element Method, Monte Carlo simulation
-
امروزه با گسترش روزافزون نیاز به شبیه سازی مواد گرانول و نیز شبیه سازی دانه بندی مواد، ایجاد احجام و سطوح تصادفی اهمیت چشمگیری پیدا کرده است. از آنجایی که مواد ناپیوسته دارای ذراتی با شکل تصادفی هستند، به همین دلیل ایجاد احجام تصادفی و استفاده از آن ها به عنوان بلوک های مجزا در تحلیل های المان مجزا، می تواند کمک شایانی در نزدیک کردن نتایج تحلیل های عددی مواد ناپیوسته به نتایج تجربی، انجام دهد. در این مقاله یک روند مناسب برای ایجاد و آماده سازی ذرات دارای اشکال پیچیده، به منظور استفاده از آنها در تحلیل های مواد ناپیوسته به روش المان مجزا، ارائه می گردد. برای این منظور، ابتدا به ایجاد احجام و سطوح تصادفی با استفاده از دو الگوریتم پیشنهادی جدید، پرداخته می شود. سپس برای اینکه احجام تصادفی ایجاد شده، در نرم افزارهای تحلیلی که از روش المان مجزا استفاده می کنند، قابل استفاده باشند، الگوریتمی برای بازتولید آن ها از طریق مونتاژ کره ها بر روی یکدیگر ارائه می گردد. در نهایت، از آنجایی که ورودی اولیه در تحلیل مواد ناپیوسته، مجموعه ای بسته بندی شده از بلوک های مجزا می باشد، با ارائه ی یک الگوریتم بسته بندی جدید، به بسته بندی این بلوک های مجزا پرداخته می شود.کلیه ی الگوریتم های موجود در این مقاله، به صورت موفق پیاده سازی شده و نتایج آن ها در محیط یک نرم افزار مدلسازی هندسی، به نمایش در آمده اند.
کلید واژگان: شکل ذرات، بازتولید مدل سه بعدی، مواد گرانول، اشکال تصادفی، روش المان مجزاJournal of Aalytical and Numerical Methods in Mining Engineering, Volume:4 Issue: 8, 2015, PP 63 -79Today، with the increasing need for simulation of granular materials and simulation of materials grading، creating random volumes and surfaces have become significantly important. Since discontinuous materials have particles with random shapes، thus، creating random volumes and using them as separate blocks in the analysis of discrete element can significantly help to adjust the numerical analysis results of discontinuous materials to the experimental results. In this paper، an appropriate process is offered to create and prepare particles with complex shapes in order to use them in the analysis of discontinuous materials by discrete element method. To this end، using two new proposed algorithms، random surfaces and volumes are created. Then، in order to use the produced random surfaces and volumes in the analytical software that uses discrete element method، an algorithm is offered to reproduce them through assembling the spheres on each other. Finally، since the initial input in the analysis of discontinuous materials is a packing set of discrete blocks by offering a new packaging algorithms، these discrete blocks are got packed. All algorithms were successfully implemented and the random volumes are generated and displayed in geometric modeling environment.Keywords: Particle shapes, 3D model reproduction, Granular materials, Random shapes, discrete element method -
توانایی روش المان مجزا برای شبیه سازی شروع و گسترش ترک محققان را قادر ساخته تا مطالب مختلفی را در زمینه مکانیزم شکست در سنگ ها بررسی کنند که با استفاده از روش های المان محدود و المان مرزی امکان پذیر نیست. بررسی تعداد میکروترک ها و آستانه شکست در سنگ ها به فهم بهتر رفتار سنگ های شکننده تحت شرایط واقعی کمک می کند. نرم افزار PFC2Dبر اساس روش المان مجزا بوده و قابلیت ویژه آن در مدل سازی گسترش ترک نسبت به دیگر روش های عددی است. مشکلی که محققان در مدل سازی با این نرم افزار مواجه هستند، عدم تطابق مقاومت کششی مدل عددی و الگوی شکست آن با نمونه واقعی با مقاومت فشارشی بالا است. در این تحقیق از نتایج آزمایشگاهی برای کالیبراسیون مدل های عددی استفاده شد. از نمونه سنگ گرانیت مقاطع نازک پتروگرافی و نمونه هایی نیز برای انجام مطالعات SEMتهیه شد. اطلاعات لازم در مورد توزیع دانه بندی و توزیع ریزترک ها در این نمونه سنگ با انجام مطالعات میکروسکوپی برای استفاده در مدل های عددی به دست آمد. علاوه بر این در این تحقیق برای دستیابی به الگوی شکست صحیح مدل ها مطابق با نمونه های آزمایشگاهی، از روشی که در آن اندازه کلامپ ها به وسیله یک شعاع تاثیر معلوم کنترل می شود، استفاده شد. استفاده از این نوع کلامپ ها مشخص نمود که نسبت مقاومت کششی به فشارشی به دست آمده از آزمایش های تک محوره و کشش از مقدار 5/ 0 (در حالت بدون کلامپ) به مقدار کمتر از 1/ 0 کاهش یافته و مقدار مقاومت کششی در نمونه های آزمایشگاهی با مقاومت فشارشی بالا تقریبا با مدل های عددی برابر می شود.
کلید واژگان: روش المان مجزا، کالیبراسیون مدل عددی، PFC2D، توزیع ریزترک ها، روش کلامپJournal of Aalytical and Numerical Methods in Mining Engineering, Volume:4 Issue: 7, 2014, PP 35 -49Ability of discrete element method to simulate initiation and propagation of cracks enables researchers to investigate different topics in the field of fracture mechanics, which is not possible with using finite element and boundary element methods. Study of micro-cracks and failure threshold in rocks with high compression strength help better understanding of brittle behavior under real conditions. PFC2D is based on discrete element method and its special features in modeling the propagation of cracks are compared with other numerical methods. The problems which researchers are faced with this software are mismatch in tensile strength and failure mode of numerical modeling in real samples with high compression strength. In this study, experimental results were used to calibrate numerical models. Petrographic thin sections and cubic samples of granite were prepared for SEM studies. Necessary information about the grain distribution and distribution of micro-cracks in rock samples with microscopic studies were obtained for using in numerical model. In addition, in this study, a clumping method was used. The clumps size is controlled by known influence radius to achieve correct failure pattern of models in accordance with lab samples. Using this type of clumping, showed that ratio of tensile to compressive strength decreases from a mount of 0.5 (without clumping) to less than 0.1 and the tensile strength in numerical models were almost equal to lab samples in high compressive strength.Keywords: Discrete Element Method, Numerical Model Calibration, PFC2D, Distribution of Micro, Cracks, Clumping Method
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.