learning algorithm
در نشریات گروه کشاورزی-
بارش یکی از مهم ترین اجزای جریان های هیدرولوژیکی به حساب می آید که میزان موثر و قابل استفاده آن برای گیاه در بخش کشاورزی و به ویژه کشت دیم از اهمیت بالایی برخوردار است. در این پژوهش، باران موثر در اراضی تحت کشت گندم دیم شهرستان خمین با به کارگیری سنجش از دور و اجرای الگوریتم سبال بر روی 28 تصویر موجود از لندست 8 در سال های زراعی 1394-1393 تا 1401-1400 برآورد گردید. برای ارزیابی دقت الگوریتم سبال از روش پنمن مانتیث استفاده شد. سپس، به منظور توسعه یک مدل از تخمین بارش موثر به کمک شبکه عصبی و داده های هوشناسی ابتدا، میزان هم بستگی میان متغیرهای هواشناسی و درجه حرارت رشد روزانه (GDD) با بارش موثر به روش هم بستگی پیرسون بررسی و با توجه به نتایج هم بستگی ها، متغیرها از نظر میزان هم بستگی اولویت بندی شدند. از داده های هواشناسی سه ایستگاه از نزدیک ترین ایستگاه های همدید به منطقه مورد مطالعه برای درونیابی متغیرهای هواشناسی با روش عکس فاصله استفاده شد. با توجه به نتایج هم بستگی ها، متغیر دمای متوسط با هم بستگی 92/0 و متغیرهای GDD و حداکثر رطوبت نسبی به ترتیب با هم بستگی 86/0 و 77/0- به عنوان متغیرهای موثر در برآورد بارش موثر شناخته شدند. در مرحله بعد متغیرهای موثر تحت سناریوهای مختلف برای آموزش شبکه ها به کار گرفته شدند و عملکرد شبکه ها با استفاده از معیار خطای RMSE و MBE ارزیابی شد. نتایج نشان داد که می توان با به کارگیری الگوریتم یادگیری Bayesian regularization و با داشتن متغیرهای دمای روزانه و GDD با دقت بسیار خوبی میزان بارش موثر را برای منطقه مورد نظر پیش بینی نمود. مقدارRMSE این مدل 1899/0 میلی متر و MBE آن 0115/0- میلی متر برآورد شد. با استفاده از مدل ارائه شده می توان تنها با داشتن متغیرهای ساده ی هواشناسی، تبخیر تعرق واقعی و در نهایت بارش موثر منطقه دیم مورد نظر را بدون نیاز به حل الگوریتم های پیچیده (نظیر سبال) با دقت مناسبی تخمین زد.کلید واژگان: الگوریتم سبال، الگوریتم های یادگیری، بارش موثر، تبخیر تعرق، شبکه عصبیPrecipitation is considered one of the most important components of hydrological cycle, and its effective and usable amount for plants is of great importance in the agricultural sector, especially rainfed cultivation. In this research, the effective precipitation (EP) in dry wheat fields of Khomein city was estimated by using RS and SEBAL on 28 available images from Landsat8 in the crop years 2014 to 2022. Penman-Monteith-Fao method was used to evaluate the accuracy of SEBAL. Then, a model of EP estimation was developed with ANN and meteorological data. For this purpose, the correlation between meteorological data and Growin Degree Days (GDD) with EP was investigated by Pearson's correlation method. the meteorological data of three stations from the closest synoptic stations to the study area were used and The meteorological data of the study area were interpolated using the Inverse Distance Weighting method (IDW). According to the results of the correlations, the average temperature parameter with a correlation of 0.92 and the GDD and the maximum relative humidity respectively with a correlation of 0.86 and -0.77 as effective variables in estimating EP. In the next step, the most effective parameters were used for modeling. the networks were trained under different scenarios, and the performance of the networks was evaluated using the RMSE and MBE error criteria. The results showed that by using the BR learning algorithm and having the variables of daily temperature and GDD, it is possible to predict the amount of EP for the target area with very good accuracy. The RMSE value of this model was 0.1899 mm and MBE was estimated as -0.0115 mm. By using the presented model, with simple meteorological variables, the actual evapotranspiration and finally the EP of the desired area can be determined with appropriate accuracy without the need to solve complex algorithms.Keywords: SEBAL, Effective Precipitation, evapotranspiration, Learning Algorithm, Feedforward Neural Network
-
با توجه به توزیع ناهمگون بارش، پیش بینی وقوع آن یکی از راه کارهای اولیه و اساسی برای پیش گیری از بلایای احتمالی و خسارات ناشی از آن است. با توجه به بالا بودن میزان بارندگی در شهرستان سردشت، روی آوردن مردم این شهرستان به کشاورزی در سال های اخیر و عدم استفاده از مدل های طبقه بندی در ایستگاه مورد مطالعه، پیش بینی هرچه دقیق تر پارامتر بارش روزانه امری ضروری است. از طرفی دیگر، با این که عملکرد مطلوب الگوریتم های تنبل و مدل های درختی باعث افزایش استفاده از آن ها برای پیش بینی پدیده های مختلف هیدرولوژیکی شده اما این الگوریتم ها در شهرستان سردشت مورد استفاده قرار نگرفته اند. لذا در این پژوهش، چهار مدل Kstar، M5P، الگوریتم یادگیری با وزن دهی محلی و جنگل تصادفی برای پیش بینی بارش روزانه ایستگاه سردشت به کار گرفته شده است. در این مطالعه از هفت پارامتر ورودی میانگین دما، حداکثر دما، رطوبت نسبی متوسط، حداکثر رطوبت نسبی، سرعت باد متوسط، حداکثر سرعت باد و ساعات آفتابی که هم زمان با بارش روزانه بودند، برای مدل ها استفاده شد. مقایسه و ارزیابی بین پارامترهای ورودی نشان داد که پارامتر ساعات آفتابی ازجمله مهم ترین پارامترهای ورودی بوده که نقش قابل توجهی در دقت پیش بینی مدل های مورد استفاده داشته است. نتایج به دست آمده نشان داد که مدل درختی M5P در سناریوی هفتم بهترین عملکرد را با بیش ترین ضریب همبستگی (734/0 میلی متر بر روز) نسبت به دیگر مدل ها داشته است. هم چنین، سناریوی هفتم عملکرد بالایی نسبت به بقیه سناریوها از خود نشان داد. لذا می توان گفت که افزایش ورودی مدل ها تا حدودی رابطه مستقیمی با دقت آن ها دارد. به طورکلی می توان گفت که مدل درختی M5P برای مدل سازی و پیش بینی بارش روزانه شهرستان سردشت مناسب بوده و برای استفاده های بعدی پیشنهاد می شود.
کلید واژگان: الگوریتم یادگیری، پیش بینی، سردشت، مدل سازی، مدل درختیDue to the heterogeneous distribution of precipitation, predicting its occurrence is one of the primary and basic solutions to prevent possible disasters and damages caused by them. Considering the high amount of precipitation in Sardasht County, the people of this city turning to agriculture in recent years and not using classification models in the studied station, it is necessary to predict the daily precipitation parameter as accurately as possible. On the other hand, although the optimal performance of lazy algorithms and tree models has increased their use for predicting various hydrological phenomena, these algorithms have not been used in Sardasht County. Therefore, in this research, four models Kstar, M5P, learning algorithm with local weighting, and random forest are used to predict the daily precipitation of Sardasht Station. In this study, seven input parameters of average temperature, maximum temperature, average relative humidity, maximum relative humidity, average wind speed, maximum wind speed, and sunshine hours which were the same time as daily rainfall were used for the models. The comparison and evaluation between the input parameters showed that the sunshine hours was one of the most important input parameters, which played a significant role in the prediction accuracy of the used models. The obtained results showed that the M5P tree model had the best performance in the seventh scenario with the highest correlation coefficient (0.734 mm/day) compared to other models. In addition, the seventh scenario showed a high performance compared to the rest of the scenarios. Therefore, it can be said that increasing the input of the models has a direct relationship with their accuracy. In general, it can be said that the M5P tree model is suitable for modeling and forecasting daily rainfall in Sardasht City and it is recommended for future use.
Keywords: Modeling, Learning algorithm, Prediction, Sardasht, Tree model -
انتخاب متغیرهای کمکی مناسب در روش های یادگیرنده ماشینی جهت نقشه برداری رقومی خاک از اهمیت ویژه ای برخوردار است. طی سال های اخیر در ایران استفاده از الگوریتم های یادگیرنده در نقشه برداری رقومی و بهنگام سازی نقشه های قدیمی توسعه یافته است. پژوهش حاضر در بخشی از اراضی دشت قزوین با هدف مقایسه جنگل های تصادفی (RF) و رگرسیون درختی توسعه یافته (BRT) در پیش بینی مکانی کلاس های زیرگروه و فامیل خاک بهمراه انتخاب متغیرهای کمکی با استفاده از شاخص تورم واریانس انجام شده است. 61 خاکرخ به روش نمونه برداری تصادفی طبقه بندی شده حفر، تشریح و با تجزیه وتحلیل آزمایشگاهی تا سطح فامیل رده بندی گردید. مناسب ترین متغیر های محیطی از میان 15 متغیر ژئومورفومتری و شاخص های سنجش از دور با استفاده از فاکتور تورم واریانس انتخاب گردیدند. مدل سازی رابطه خاک - زمین نما در دو سطح زیرگروه و فامیل خاک با استفاده از دو الگوریتم یادگیرنده RF و BRT در نرم افزار RStudio بر اساس دو بسته "Randomforest" و "C5.0" اجرا گردید. نتایج انتخاب متغیر های محیطی نشان داد که شش متغیر CHA،DEM ، STH، NDVI، SI و DVI به عنوان متغیر ورودی انتخاب گردیدند. شاخص های ارزیابی مدل ها شامل صحت کلی و شاخص کاپا به ترتیب برای الگوریتم BRT، 35، 26 درصد و برای الگوریتم RF،70، 60 درصد در سطح فامیل خاک حاصل گردید. آنالیز حساسیت برمبنای شاخص میانگین حداقل صحت نشان داد که متغیر محیطی مساحت حوزه آبخیز اصلاح شده دارای بیشترین اهمیت نسبی در میان متغیرهای انتخاب شده است. به طورکلی با استفاده از رویکردهای نوین انتخاب متغیر و الگوریتم های یادگیرنده موثر می توان نقشه ی پراکنش مکانی خاک ها را حتی در نواحی با پستی وبلندی کم با صحت قابل قبول تهیه نمود.
کلید واژگان: نقشه برداری رقومی خاک، الگوریتم یادگیرنده، مدل جنگل تصادفی، درخت تصمیم توسعه یافته، داده کاویAppropriate selection of ancillary covariates have a specific important on digital soil mapping. Currently, use of machine learning algorithms for digital mapping and updating of conventional soil map has been developed in Iran. The current study has been done to compare the BRT and RF models for spatial prediction of subgroup and family classes with selection of axillary variables using VIF approach in some part of Qazvin Plain. 61 pedons were sampled based on stratified random, digged, described and classified with consideration of laboratory analysis up to family level. The most appropriate variables were selected among 15 Geomorphometry and Remote Sensing Indices using Variance Inflation Factor (VIF). Soil landscape modeling was conducted with RF and BRT learning algorithm in RStudio software based on Randomforest and C5.0 packages at subgroup and family levels. The results showed that six indices including CHA, DEM, STH, SI DVI and NDVI were selected as input variables. Assessment indices such as the Overall Accuracy (OA) and Kappa were obtained for BRT (35, 26%) and RF (70, 60%) at family level, respectively. Sensitivity analysis based on the mean decrease accuracy (MDA) revealed that the modified catchment area variable is the most relative important variable among the selected variables. Generally, by using feature selection innovative approach and effective learning algorithms, the spatial distribution of soil maps could be made even in low relief lands with acceptable accuracy.
Keywords: digital soil mapping, Learning Algorithm, Random Forests Model, Boosting Decision Tree, Data Mining -
سیلاب یکی از مهمترین بلایای طبیعی است که حیات و سرمایه بشری را تهدید می نماید. سد های پاره سنگی یکی از روش های ارزان قیمت جهت کنترل سیلاب محسوب میگردند. استفاده از این سدها سبب می شود که هیدروگراف سیل خروجی از آن، دارای دبی اوج کمتر و زمان پایه بزرگتری نسبت به هیدروگراف ورودی گردد. شبکه عصبی مصنوعی از جمله روش هایی است که می تواند با دقت مناسبی فرآیندهای پیچیده و غیرخطی را برآورد نماید. اما دقت پیشبینی آن به نوع الگوریتم یادگیری و تابع آستانه مورد استفاده بستگی دارد. در این تحقیق به منظور برآورد دبی خروجی از سدهای پاره سنگی و بر مبنای بکارگیری داده های آزمایشگاهی، مدل شبکه عصبی پرسپترون چندلایه با الگوریتم های یادگیری مختلف و تابعهای آستانه مورد ارزیابی قرار گرفت. سپس، دبی برآورد شده با روش شبکه عصبی مصنوعی با مقادیر حاصله از مدل عددی دو بعدی مقایسه گردید. نتایج نشان داد که مدل پرسپترون چندلایه با الگوریتم یادگیری دلتا بار دلتا و تابع آستانه تانژانت هایپربولیک با مقدار میانگین مربع خطا برابر با 00011/0، مقدار دبی خروجی از سد پاره سنگی را با دقت بالایی پیش بینی می نماید. همچنین شبکه عصبی مصنوعی با مقدار ضریب تعیین (962/0 =2R) همانند مدل عددی (984/0 =2R) ازعملکرد مطلوبی برخوردار بود. بنابراین میتوان برای تخمین دبی خروجی از سد های پارهسنگی، با بکارگیری شبکه عصبی مصنوعی بجای روش های عددی به مشکل پیچیدگی و زمان بر بودن روش های عددی فائق آمد.
کلید واژگان: سد پاره سنگی، برآورد دبی خروجی، شبکه عصبی مصنوعی، مدل عددی، الگوریتم یادگیریFlood is one of the most important natural disasters that threats human life and wealth. Application of rockfill dams is one of the low-cost methods for flood controlling. The use of these dams is resulted in higher peak discharge and shorter time in output flood hydrograph than those in input hydrograph. Artificial neural network (ANN) is one of the methods which can predict complex and non-linear processes at desirable level of accuracy. However، the accuracy of its prediction depends on the type of used learning algorithm and threshold function. In this study for estimation of flow through rockfill dam based on experimental data، multilayer perceptron model with different learning algorithms and threshold functions was evaluated. Afterwards، the output discharge values predicted by ANN method were compared with the values computed by two-dimensional numerical model. The results showed that the Multilayer perceptron model using Delta-Bar-Delta learning algorithm and Tanh threshold function with mean square error equal to 0. 00011 predicted the output discharge from rockfill dam with high accuracy. The ANN method with a R2 of 0. 962 performed as good as the numerical model (R2 =0. 984) for estimation of the mentioned parameter. Therefore، the drawback of the time-consuming and complex numerical methods analysis in estimating the output discharge of the dams can be overcome by using artificial neural network.Keywords: Rockfill dam, Output discharge estimation, Artificial neural network, Numerical method, Learning algorithm
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.