به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

function approximation

در نشریات گروه آب و خاک
تکرار جستجوی کلیدواژه function approximation در نشریات گروه کشاورزی
تکرار جستجوی کلیدواژه function approximation در مقالات مجلات علمی
  • الهام رضایی، عباس خاشعی سیوکی، علی شهیدی
    این مطالعه روشی برای طراحی شبکه های پایش کمی آب زیر زمینی به منظور کاهش نقاط پایش مکانی اضافی ارائه می کند؛ چاه های اضافی، که اگر نمونه گیری نشوند، خطای تخمین سطح آب زیر زمینی آن ها قابل چشم پوشی است. این روش مبتنی بر روش ماشین بردار پشتیبان بر پایه تئوری یادگیری آماری است. در این مطالعه، با استفاده از اطلاعات کمی 63 چاه مشاهداتی و پارامتر های هواشناسی (بارندگی و تبخیر) دشت رامهرمز، در دوره 7 ساله، عملکرد مدل حداقل مربعات ماشین بردار پشتیبان (LS-SVM) در طراحی شبکه برداشت چاه های مشاهداتی آب زیر زمینی بررسی شد. ترکیب های مختلف پارامتر های اثر گذار بر تراز سطح آب زیر زمینی با استفاده از مدل LS-SVM ارزیابی شد. ترکیب برتر مدل LS-SVM دربرگیرنده شاخص های عملکرد (3405/0MAE=و 9992/0= 2R) است. سپس، با استفاده از تابع تقریب بهینه، 42 عدد چاه مشاهداتی به منظور پایش مکانی مناسب در منطقه دشت رامهرمز مشخص شد.
    کلید واژگان: تابع تقریب، دشت رامهرمز، مدل سازی آب زیر زمینی، نقاط پایش
    Elham Rezaei, Abbas Khashei- Siuki, Ali Shahidi
    The present study presents a methodology for the design of long-term groundwater head monitoring networks to reduce spatial redundancy in which the additional wells if not sampled، the error related to groundwater level estimation would be negligible. This method is based on Support Vector Machine، and founded upon the statistical learning theory. Throughout the study، some 63 quantitative data، observation wells as well as meteorological parameters (precipitation and evaporation) of Ramhormoz plain (in a 7-year period) were employed to evaluate the performance of Least Squares Support Vector Machine model (LS-SVM) in the groundwater observation well network design concept. Different combinations of parameters affecting the ground water level were assessed using the model LS-SVM. The optimal combination of LSSVM model with RBF Kernel function carries such performance parameters as R2=0. 9992، MAE=0. 3405. Then، using Function Approximation Optimum، a number of 42 observation wells were pinpointed to apply the appropriate spatial monitoring in the plain of RAMHORMOZ.
    Keywords: Monitoring points, Function approximation, RAMHORMOZ Plain, Groundwater modelling
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال