به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

learning algorithm

در نشریات گروه آب و خاک
تکرار جستجوی کلیدواژه learning algorithm در نشریات گروه کشاورزی
تکرار جستجوی کلیدواژه learning algorithm در مقالات مجلات علمی
  • سهیلا محتشمی، زهرا آقاشریعتمداری*
    بارش یکی از مهم ترین اجزای جریان های هیدرولوژیکی به حساب می آید که میزان موثر و قابل استفاده آن برای گیاه در بخش کشاورزی و به ویژه کشت دیم از اهمیت بالایی برخوردار است. در این پژوهش، باران موثر در اراضی تحت کشت گندم دیم شهرستان خمین با به کارگیری سنجش از دور و اجرای الگوریتم سبال بر روی 28 تصویر موجود از لندست 8 در سال های زراعی 1394-1393 تا 1401-1400 برآورد گردید. برای ارزیابی دقت الگوریتم سبال از روش پنمن مانتیث استفاده شد. سپس، به منظور توسعه یک مدل از تخمین بارش موثر به کمک شبکه عصبی و داده های هوشناسی ابتدا، میزان هم بستگی میان متغیرهای هواشناسی و درجه حرارت رشد روزانه (GDD) با بارش موثر به روش هم بستگی پیرسون بررسی و با توجه به نتایج هم بستگی ها، متغیرها از نظر میزان هم بستگی اولویت بندی شدند. از داده های هواشناسی سه ایستگاه از نزدیک ترین ایستگاه های همدید به منطقه مورد مطالعه برای درونیابی متغیرهای هواشناسی با روش عکس فاصله استفاده شد. با توجه به نتایج هم بستگی ها، متغیر دمای متوسط با هم بستگی 92/0 و متغیرهای GDD و حداکثر رطوبت نسبی به ترتیب با هم بستگی 86/0 و 77/0- به عنوان متغیرهای موثر در برآورد بارش موثر شناخته شدند. در مرحله بعد متغیرهای موثر تحت سناریوهای مختلف برای آموزش شبکه ها به کار گرفته شدند و عملکرد شبکه ها با استفاده از معیار خطای RMSE و MBE ارزیابی شد. نتایج نشان داد که می توان با به کارگیری الگوریتم یادگیری Bayesian regularization و با داشتن متغیرهای دمای روزانه و GDD با دقت بسیار خوبی میزان بارش موثر را برای منطقه مورد نظر پیش بینی نمود. مقدارRMSE این مدل 1899/0 میلی متر و MBE آن 0115/0- میلی متر برآورد شد. با استفاده از مدل ارائه شده می توان تنها با داشتن متغیرهای ساده ی هواشناسی، تبخیر تعرق واقعی و در نهایت بارش موثر منطقه دیم مورد نظر را بدون نیاز به حل الگوریتم های پیچیده (نظیر سبال) با دقت مناسبی تخمین زد.
    کلید واژگان: الگوریتم سبال، الگوریتم های یادگیری، بارش موثر، تبخیر تعرق، شبکه عصبی
    Soheila Mohtashami, Zahra Aghashariatmadari *
    Precipitation is considered one of the most important components of hydrological cycle, and its effective and usable amount for plants is of great importance in the agricultural sector, especially rainfed cultivation. In this research, the effective precipitation (EP) in dry wheat fields of Khomein city was estimated by using RS and SEBAL on 28 available images from Landsat8 in the crop years 2014 to 2022. Penman-Monteith-Fao method was used to evaluate the accuracy of SEBAL. Then, a model of EP estimation was developed with ANN and meteorological data. For this purpose, the correlation between meteorological data and Growin Degree Days (GDD) with EP was investigated by Pearson's correlation method. the meteorological data of three stations from the closest synoptic stations to the study area were used and The meteorological data of the study area were interpolated using the Inverse Distance Weighting method (IDW). According to the results of the correlations, the average temperature parameter with a correlation of 0.92 and the GDD and the maximum relative humidity respectively with a correlation of 0.86 and -0.77 as effective variables in estimating EP. In the next step, the most effective parameters were used for modeling. the networks were trained under different scenarios, and the performance of the networks was evaluated using the RMSE and MBE error criteria. The results showed that by using the BR learning algorithm and having the variables of daily temperature and GDD, it is possible to predict the amount of EP for the target area with very good accuracy. The RMSE value of this model was 0.1899 mm and MBE was estimated as -0.0115 mm. By using the presented model, with simple meteorological variables, the actual evapotranspiration and finally the EP of the desired area can be determined with appropriate accuracy without the need to solve complex algorithms.
    Keywords: SEBAL, Effective Precipitation, evapotranspiration, Learning Algorithm, Feedforward Neural Network
  • سیدروح الله موسوی، فریدون سرمدیان*، اصغر رحمانی

    انتخاب متغیرهای کمکی مناسب در روش های یادگیرنده ماشینی جهت نقشه برداری رقومی خاک از اهمیت ویژه ای برخوردار است. طی سال های اخیر در ایران استفاده از الگوریتم های یادگیرنده در نقشه برداری رقومی و بهنگام سازی نقشه های قدیمی توسعه یافته است. پژوهش حاضر در بخشی از اراضی دشت قزوین با هدف مقایسه جنگل های تصادفی (RF) و رگرسیون درختی توسعه یافته (BRT) در پیش بینی مکانی کلاس های زیرگروه و فامیل خاک بهمراه انتخاب متغیرهای کمکی با استفاده از شاخص تورم واریانس انجام شده است. 61 خاکرخ به روش نمونه برداری تصادفی طبقه بندی شده حفر، تشریح و با تجزیه وتحلیل آزمایشگاهی تا سطح فامیل رده بندی گردید. مناسب ترین متغیر های محیطی از میان 15 متغیر ژئومورفومتری و شاخص های سنجش از دور با استفاده از فاکتور تورم واریانس انتخاب گردیدند. مدل سازی رابطه خاک - زمین نما در دو سطح زیرگروه و فامیل خاک با استفاده از دو الگوریتم یادگیرنده RF و BRT در نرم افزار RStudio بر اساس دو بسته "Randomforest" و "C5.0" اجرا گردید. نتایج انتخاب متغیر های محیطی نشان داد که شش متغیر CHA،DEM ، STH، NDVI، SI و DVI به عنوان متغیر ورودی انتخاب گردیدند. شاخص های ارزیابی مدل ها شامل صحت کلی و شاخص کاپا به ترتیب برای الگوریتم BRT، 35، 26 درصد و برای الگوریتم RF،70، 60 درصد در سطح فامیل خاک حاصل گردید. آنالیز حساسیت برمبنای شاخص میانگین حداقل صحت نشان داد که متغیر محیطی مساحت حوزه آبخیز اصلاح شده دارای بیشترین اهمیت نسبی در میان متغیرهای انتخاب شده است. به طورکلی با استفاده از رویکردهای نوین انتخاب متغیر و الگوریتم های یادگیرنده موثر می توان نقشه ی پراکنش مکانی خاک ها را حتی در نواحی با پستی وبلندی کم با صحت قابل قبول تهیه نمود.

    کلید واژگان: نقشه برداری رقومی خاک، الگوریتم یادگیرنده، مدل جنگل تصادفی، درخت تصمیم توسعه یافته، داده کاوی
    Sayed Roholla Mousavi, Fereydoon Sarmadian *, Asghar Rahmani

    Appropriate selection of ancillary covariates have a specific important on digital soil mapping. Currently, use of machine learning algorithms for digital mapping and updating of conventional soil map has been developed in Iran. The current study has been done to compare the BRT and RF models for spatial prediction of subgroup and family classes with selection of axillary variables  using VIF approach in some part of Qazvin Plain. 61 pedons were sampled based on stratified random, digged, described and classified with consideration of laboratory analysis up to family level. The most appropriate variables were selected among 15 Geomorphometry and Remote Sensing Indices using Variance Inflation Factor (VIF). Soil landscape modeling was conducted with RF and BRT learning algorithm in RStudio software based on Randomforest and C5.0 packages at subgroup and family levels. The results showed that six indices including CHA, DEM, STH, SI DVI and NDVI were selected as input variables. Assessment indices such as the Overall Accuracy (OA) and Kappa were obtained for BRT (35, 26%) and RF (70, 60%) at family level, respectively. Sensitivity analysis based on the mean decrease accuracy (MDA) revealed that the modified catchment area variable is the most relative important variable among the selected variables. Generally, by using feature selection innovative approach and effective learning algorithms, the spatial distribution of soil maps could be made even in low relief lands with acceptable accuracy.

    Keywords: digital soil mapping, Learning Algorithm, Random Forests Model, Boosting Decision Tree, Data Mining
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال