support vector machine regression
در نشریات گروه آب و خاک-
مطالعه حاضر با هدف برآورد درصد ذرات خاک با استفاده از روش طیف سنجی مریی و مادون قرمز نزدیک در منطقه سمیرم استان اصفهان انجام بود. تعداد 200 نمونه خاک سطحی (10 سانتی متری) از منطقه سمیرم اصفهان (طول جغرافیایی 17 51 تا 3 52 شرقی وعرض جغرافیایی 42 30 تا 51 31 شمالی) جمع آوری گردید. نمونه ها هواخشک شدند و از الک دو میلی متری عبور داده شدند و درصد ذرات خاک در آزمایشگاه با روش هیدرومتری تعیین شد. همچنین طیف سنجی نمونه های خاک با استفاده از دستگاه طیف سنج زمینی انجام گرفت. سپس روش های پیش پردازش مشتق اول با فیلتر ساویتزکی گلای، تصحیح پخشیده چندگانه و متغیر نرمال استاندارد بر روی طیف ها انجام شدند. برای برقراری ارتباط بین درصد ذرات خاک با ویژگی های طیفی آن از مدل های رگرسیون حداقل مربعات جزیی، ماشین بردار پشتیبان و شبکه عصبی استفاده گردید. بهترین نتیجه برای برآورد سیلت با استفاده از شبکه عصبی مصنوعی با روش پیش پردازش تصحیح پخشیده چندگانه با RPD (نسبت انحراف معیار به RMSE) بیشتر از 2، 98/0=R2 و کمترین مقدار g/Kg 08/1=RMSE به دست آمد. نتایج مطلوبی نیز برای مدل شبکه عصبی مصنوعی به ترتیب با روش های پیش پردازش تصحیح پخشیده چندگانه و متغیر نرمال استاندارد برای مقادیر رس (RPD بیشتر از 2، 94/0=R2 و کمترین مقدار g/Kg 21/1=RMSE-) و شن (انحراف پیش بینی باقی مانده بیشتر از 2، 84/0=R2 و کمترین مقدار g/Kg08/1=RMSE) به دست آمد. به طور کلی، براساس نتایج این مطالعه، طیف سنجی مریی مادون قرمز نزدیک در برآورد درصد ذرات خاک موفق بوده است و قابلیت جانشینی با روش های آزمایشگاهی را دارد.
کلید واژگان: روش های پیش پردازش، رگرسیون حداقل مربعات جزئی، شبکه عصبی مصنوعی، رگرسیون ماشین بردار پشتیبان، طیف سنجیThe present research performed to estimate soil texture using visible near-infrared spectrometry in Semirom, Isfahan. A total number of 200 soil samples (0-10 cm) were collected from the Semirom area (51º 17' - 52º 3' E; 30º 42' - 31º 51' N), Isfahan. The samples were air dried and passed through a 2 mm sieve, and soil particles percentage was determined in the laboratory using hydrometry method. Reflectance spectra of all samples were measured using an ASD field spectrometer. Different pre-processing methods i.e., First Derivatives and Savitzky-Golay Filter, Multiplicative Scatter Correction and Standard Normal Variable were applied and performed on spectral data. The Partial Least Squares Regression, Support Vector Machine Regression and Artificial Neural Network models were used to estimate soil texture. The best result was obtained for Silt estimation, with excellent values of RPD >2, R2 =0.98 and RMSE=1.08 using Artificial Neural Network model with MSC pre-processing technique. The results indicated the desirable capability of Artificial Neural Network model with MSC and SNV pre-processing techniques in estimating the Clay (RPD >2, R2=0.94 and RMSE=1.21) and Sand (RPD >2, R2=0.84 and RMSE=6.24) contents of the soils, respectively. In general, based on the results of this study, VNIR spectroscopy was successful in estimating soil particles percentage and showed its potential for substituting laboratory analyses.
Keywords: Artificial Neural Network, Partial Least Squares Regression (PLSR), Pre-processing methods, Spectroscopy, Support Vector Machine Regression -
تبخیر به عنوان یک عامل کلیدی در مطالعات هیدرولوژیکی، آب و هوایی، مدیریت آب کشاورزی، برنامه ریزی آبیاری و غیره در نظر گرفته می شود. تبخیر به دلیل فعل و انفعالات عوامل مختلف آب و هوایی، یک پدیده پیچیده و غیرخطی است. بنابراین، برای تخمین تبخیر باید از مدل های پیشرفته مانند معادلات تجربی و هوش مصنوعی استفاده کرد. در سال های اخیر، معادلات تجربی به طور گسترده برای تخمین تبخیر استفاده شده است. در این تحقیق عملکرد مدل های رگرسیون فرایند گاوسی (GPR) و رگرسیون ماشین بردار پشتیبان (SVR) در تخمین تبخیر روزانه دو ایستگاه آمل و بم، در بازه زمانی 2020- 2016 ارزیابی شده است. داده های روزانه هواشناسی میانگین دما، رطوبت نسبی، ساعات آفتابی و سرعت باد، به عنوان ورودی مدل های GPR و SVR برای تخمین تبخیر روزانه استفاده شد. در مطالعه حاضر چهار سناریو ترکیبی از پارامترهای هواشناسی به منظور تخمین تبخیر بکار گرفته شدند. نتایج حاصل از مدل های مذکور نشان داد که هر دو مدل GPR و SVR عملکرد قابل قبولی در تخمین تبخیر دارند (ضریب همبستگی حدود 94/0). همچنین با توجه به ارزیابی های انجام شده، مشخص شد که مدل GPR عملکرد بهتری نسبت به مدل SVR داشته است (جذر میانگین مربعات خطا به ترتیب 56/1 و 62/1). در تحقیق حاضر از کرنل PUK به دلیل داشتن دقت بالا، بیشترین ضریب همبستگی و کمترین خطا (94/0 و 84/0) استفاده گردید.
کلید واژگان: تخمین تبخیر، رگرسیون فرایند گاوسی، رگرسیون ماشین بردار پشتیبان، آمل، بمEvaporation is considered as a key factor in hydrological, climatic, agricultural water management, irrigation planning, etc. studies. Evaporation is a complex and nonlinear phenomenon due to the interactions of various climatic factors. Therefore, advanced models such as experimental equations and artificial intelligence should be used to estimate evaporation. In recent years, experimental equations have been widely used to estimate evaporation. In this study, the performance of Gaussian process regression (GPR) and support vector machine regression (SVR) models in estimating the daily evaporation of Amol and Bam stations in the period 2020-2016 has been evaluated.Daily meteorological data on mean temperature, relative humidity, sunshine hours and wind speed were used as input of GPR and SVR models to estimate daily evaporation. In the present study, four combined scenarios of meteorological parameters were used to estimate evaporation. The results of the mentioned models showed that both GPR and SVR models have acceptable performance in estimating evaporation (correlation coefficient about 0.94). Also, according to the evaluations, it was found that the GPR model had a better performance than the SVR model (root mean square error of 1.56 and 1.62, respectively). In the present study, the PUK kernel was used due to its high accuracy, highest correlation coefficient and lowest error (0.94 and 0.84).
Keywords: Evaporation estimation, Gaussian process regression, Support vector machine regression, Amol, Bam
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.