airflow
در نشریات گروه پزشکی-
Introduction
Elimination of inflammation and re-osseointegration are the major objectives of peri-implantitis therapy. Existing data, however, do not support any decontamination approach. Thus, the present in vitro study aims to assess whether the air-debriding decontamination method with erythritol powder restores the biocompatibility of infected titanium discs and to investigate the potent biomodulatory ability of diode laser (810 nm) irradiation to promote cell proliferation and differentiation of premature osteoblast-like cells (MG63) towards osteocytes.
MethodsThe experimental groups consisted of cells seeded on titanium discs exposed or not in a peri-implantitis environment with or without biomodulation. Infected discs were cleaned with airflow with erythritol powder. Cell cultures seeded on tricalcium phosphate (TCP) surfaces with or without biomodulation with a laser (810 nm) were used as controls. The study evaluated cell viability, proliferation, adhesion (SEM) at 24, 48 and 72 hours, and surface roughness changes (profilometry), as well as the effects of low-level laser therapy (LLLT) on ALP, OSC, TGF-b1, Runx-2, and BMP-7 expression in MG63 cells’ genetic profile on days 7, 14, and 21.
ResultsThe MTT assay as well as the FDA/PI method revealed that cell proliferation did not show significant differences between sterile and decontaminated discs at any timepoint. SEM photographs on day 7 showed that osteoblast-like cells adhered to both sterile and disinfected surfaces, while surface roughness did not change based on amplitude parameters. The combination of airflow and LLLT revealed a biomodulated effect on the differentiation of osteoblast-like cells with regard to the impact of laser irradiation on the genetic profile of the MG63 cells.
ConclusionIn all groups tested, osteoblast-like cells were able to colonize, proliferate, and differentiate, suggesting a restoration of biocompatibility of infected discs using airflow. Furthermore, photomodulation may promote the differentiation of osteoblast-like cells cultured on both sterile and disinfected titanium surfaces.
Keywords: Peri-implantitis, Airflow, LLLT, Biomodulation, Photomodulation -
Introduction
Sleep apnea syndrome can be considered as one of the most serious risk factors of sleep disorder. Due to the lack of information about this disease, many causes of unexpected deaths have been identified. With increasing the number of patients with this disease around the world, many patients suffer apnea complications. Most of them are not treated because of the complex and costly and time - c onsuming polysomnography (PSG) diagnostic procedure.
Material and MethodsThis descriptive - analytical study was performed on 50 patients referred to sleep clinic of Imam Khomeini Hospital in Tehran, Attempts to design, and develop a system for detection of sleep apnea and its severity using ECG signals, RR intervals and airflow. The random forest algorithm and MATLAB2016 were used in the design of the system that the algorithm inputs are extracted 8 features nonlinear in time - frequency domain from airflow and ECG signals and 10 nonlinear features of RR intervals.
ResultsThe accuracy for normal, obstructive, central and mixed apnea was obtained at 95.3%, 97.92%, 99.60%, and 97.29%, respectively, and the accuracy For detection of normal, mild, moderate and severe apnea was obtained 96%, 94%, 94%, 96% respectively. According to the results, the proposed system can correctly classify the types of sleep apnea and its severity.
ConclusionThe proposed system, which has high performance capability in addition t o increasing the physician speed and accuracy in the diagnosis of apnea can be used in home systems and the areas where healthcare facilities are not sufficient.
Keywords: Sleep Apnea, Polysomnography, ECG, Airflow, Random Forest -
Introduction
Among sleep-related disorders, Sleep apneahas been under more attention and it’s the most common respiratory disorder in which respirationceases frequently which can lead to serious health disorders and even mortality. Polysomnography is the standard method for diagnosing this disease at the moment which is costly and time-consuming. The present study aimed at analyzing vital signals to diagnose Sleep apneausing machine learning algorithms.
Material and MethodsThis analytical–descriptive was conducted on 50 patients (11 normal, 13 mild, 17 moderate and 9 severe patients) in the sleep clinic of Imam Khomeini hospital. Initially, data pre-processing was carried out in two steps(noise elimination and moving average algorithm). Next, using thesingular value decompositionmethod, 12 features were extracted for airflow. Finally, to classify data, SVM with quadratic, polynomialand RBF kernels were trained and tested.
ResultsAfter applying different kernel functions on SVM, the RBF kernel showed the most efficient performance.After 10 fold cross validation method for evaluation, the mean accuracy obtained for normal, apnea, and hypopnea modes were 92.74%, 91.70%, 93.26%.
ConclusionThe results show that in online applications or applications where the volume and time of calculations and at the same time the accuracy of the result is very important, The disease can be diagnosed with acceptable accuracy using machine learning algorithms.
Keywords: Sleep Apnea, SVM Algorithm, Polysomnography, Airflow -
مقدمهدر اتاق پاک غلظت ذرات هوابرد تحت کنترل می باشد و نقش مهمی در تولید داروها و محصولات با تکنولوژی بالا دارد. الگوی جریان هوا یکی از پارامترهای مهم و موثر در غلظت ذرات و توزیع آلودگی درون اتاق های پاک می باشد، بنابراین الگوسازی دقیق جریان هوا درون اتاق های پاک حائز اهمیت می باشد. بنابراین در این مطالعه ارزیابی و شبیه سازی الگوی جریان هوا در اتاق های پاک مورد بررسی قرار گرفت.روش بررسیمطالعه حاضر یک پژوهش تجربی-کاربردی می باشد که در سال 1394 در یک صنعت دارویی انجام شد. روش انجام کار در این مطالعه بررسی تعیین الگوی جریان هوا در اتاق پاک می باشد. در این مطالعه 3 اتاق پاک مربوط به 3 کلاس پاکیزگی B ، C و D مورد بررسی قرار گرفت . سپس شبیه سازی الگوی جریان، تعیین بردارهای سرعت در اتاق پاک توسط تکنیک CFD می باشد.یافته هایافته های این مطالعه نشان داد که سرعت جریان هوا اندازه گیری شده در مدل تجربی ، در فواصل افقی و عمودی مختلف با سرعت های جریان هوا پیش بینی شده توسط نرم افزار فلوئنت در شرایط مشابه و در فواصل یکسان بسیار نزدیک به هم می باشد. هم چنین کانتورهای سرعت جریان هوا برای 3 کلاس پاکیزگی تعیین گردید. بعلاوه، نتایج سنجش غلظت ذرات در اتاق های پاک نشان می دهد که میانگین تراکم آلودگی ذرات در سه کلاس پاکیزگی از حد مجاز استاندارد پایین تر بود.نتیجه گیریاین مطالعه نشان داد که مدل آشفتگی RNG K-Ɛ مناسب ترین مدل برای شبیه سازی الگوی جریان هوا در اتاق پاک می باشد . هم چنین وجود ابزار وتجهیزات موجود در اتاق پاک بر الگوی جریان هوا و در نهایت بر راندمان حذف ذرات در اتاق پاک تاثیر می گذارد.کلید واژگان: مدل آشفتگی RNG K، Ɛ، شبیه سازی، جریان هوا، فلوئنتBackground And AimsThe clean room is under the control of concentrations of airborne particles play an important role in the production of drugs and high-tech products. Clean air flow pattern in the room is one of the important parameters of particle concentration and distribution of air pollution and need to be accurately modeled. So in this study was to evaluate and simulate the flow pattern of clean air in the room was investigated.MethodsThis study used an experimental study that was conducted at 2015 in the pharmaceutical industry .The methodology used in this study was to determine the air flow pattern in cleanroom. In this study, 3 clean room with 3 cleanliness classes B, C and D were studied. Then simulate the flow pattern, determine the velocity vectors in the cleanroom is cleared by CFD techniques.ResultsThe findings of this study showed that air flow rate measured in experimental models with air flow rates predicted by FLUENT software under the same conditions and at the same spacing is very close to each other .Also airflow velocity contours for 3 the cleanliness class were determined .In addition, the results of measurement of particle concentration in clean rooms shows the mean concentration of particulate contamination in three classes cleanliness was below the standard limit.ConclusionThis study showed that RNG K-ℇ turbulence model the most appropriate model to simulate air flow pattern in the room is clean. There is also equipment and a tool in a clean room on the pattern of air flow and ultimately affects the particle removal efficiency in the clean room.Keywords: RNG k–ε turbulence model, simulation, Airflow, fluent
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.