bayesian regularized artificial neural network
در نشریات گروه پزشکی-
سابقه و هدف
روش های مدل سازی غیر خطی برای مطالعات رابطه کمی ساختمان- اثر، راه های گویاتری نسبت به روش های خطی، برای رفتارهای مولکولی هستند. شبکه های عصبی مصنوعی، مدل ها و الگوریتم های ریاضی هستند که پردازش اطلاعات و یادگیری مغز انسان را تقلید می کنند. نشان داده شده است برخی مشتقات S-alkyl تیوسمی کاربازون در پیش گیری و درمان عفونت های مایکو باکتریایی اثر بخش بوده اند. این مطالعه با هدف یافتن ارتباط ساختار با اثر این ترکیبات انجام پذیرفت.
مواد و روش هادر این مطالعه وابستگی کمی کنش و ساختار (QSAR)، از رگرسیون خطی چندگانه و شبکه عصبی مصنوعی با تنظیم بایسین برای 47 ترکیب از مشتقات تیوسمی کاربازون، استفاده گردید. توصیف کننده ها از روش انتخاب و حذف گام به گام از مجموع 343 توصیف کننده، انتخاب شدند. یک شبکه ی سه لایه ی پیش خور پس انتشار با تنظیم بایسین به وسیله نرم افزار MATLAB نسخه R2009a طراحی، بهینه و ارزیابی شد.
یافته هاپس از رگرسیون خطی چندگانه یک مدل با 6 توصیف کننده حاصل شد: (039/0 ± 235/0)Qneg - (600/1 ± 706/1)PMIZ - (017/0 ± 066/0)PMIX - (018/0 ± 067/0) + 592/2 Log MIC= RDF060p (021/0 ± 064/0) RDF 140u- (026/0 ± 118/0) RDF03 +
بهترین مدل BR-ANN یک شبکه سه لایه با سه گره در لایه مخفی بود.استنتاجمدل BR-ANN قدرت پیش بینی کنندگی بیش تری نسبت به مدل های خطی دارد و احتمالا بهتر می تواند فعالیت ضد سلی ترکیبات جدید با شالوده ساختاری یکسان در میان مشتقات تیوسمی کاربازون را پیش بینی کند.
کلید واژگان: رابطه کمی ساختمان-اثر، رگرسیون خطی چندگانه، شبکه ی عصبی مصنوعی با تنظیم بایسین، مشتقات تیوسمی کاربازونBackground and purposeNonlinear analysis methods for quantitative structure–activity relationship (QSAR) studies better describe molecular behaviors, than linear analysis. Artificial neural networks are mathematical models and algorithms which imitate the information process and learning of human brain. Some S-alkyl derivatives of thiosemicarbazone are shown to be beneficial in prevention and treatment of mycobacterial infections and this study seeks to find out the relationship between structural features and the anti-tuberculosis activity of these compounds.
Materials and methodsMultiple linear regression and Bayesian regularized artificial neural network (BRANN) for 47 compounds of thiosemicarbazone derivatives were designed using QSAR approaches. Descriptors were selected from a pool of 343 descriptors by stepwise selection and backward elimination. A three layer Bayesian regularized back-propagation feed-forward network was designed, optimized, and evaluated using MATLAB version R2009a.
ResultsThe best model with 6 descriptors was found using multiple linear regression analysis: Log MIC= 2.592 + (0.067 ± 0.018) PMIX – (0.066 ± 0.017) PMIZ – (1.706 ± 1.600) Qneg – (0.235 ± 0.039) RDF030p + (0.118 ± 0.026) RDF 140u – (0.064 ± 0.021) RDF060p. The best BRANN model was a three-layer network with three nodes in its hidden layer.
ConclusionThe BRANN model has a better predictive power than linear models and may better predict the anti-tuberculosis activity of new compounds with similar backbone of thiosemicarbazone moiety.
Keywords: quantitative structure–activity relationship, multiple linear regression, Bayesian regularized artificial neural network, Thiosemicarbazone derivatives
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.