multi-layered software architecture
در نشریات گروه پزشکی-
Background
Combining a One-Class Support Vector Machine (OCSVM) with a Convolutional Neural Network (CNN) is presented as a novel technique for detecting fraud in Enterprise Resource Planning (ERP) systems.
ObjectivesThe objective of this research is to develop a technique for detecting fraud in Enterprise Resource Planning (ERP) systems by combining a One-Class Support Vector Machine (OCSVM) with a Convolutional Neural Network (CNN), suitable for the Spor Istanbul ERP system.
MethodsThis study examines the ERP system utilized by Spor Istanbul, the largest sports enterprise in Turkey, as a case study. The study utilizes a custom database of web-based program files to create a dataset of benign and malicious JavaScript applications. Firstly, the text and control flow graph of the program is analyzed. Secondly, the OCSVM method is applied as an outlier detection technique, and CNN is used as a classifier.
ResultsThe experimental results indicate that the proposed OCSVM-CNN approach achieves higher accuracy (96.78%) in detecting malicious scripts compared to using only CNN (94.8%).
ConclusionThe research contributes to the development of multi-layered ERP software architecture with AI decision support, improving fraud detection in ERP systems.
Keywords: Enterprise Resource Planning, Intelligent ERP, Forecasting, Demand Prediction, Decision Support System, Artificial Neural Networks, Cellular Neural Networks, Multi-Layered Software Architecture
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.